File size: 22,898 Bytes
fa0bd64 2182763 fa0bd64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# dynamic_preprocess and find_closest_aspect_ratio are referenced from https://github.com/OpenGVLab/InternVL
import base64
import os
import tempfile
from io import BytesIO
import numpy as np
import torch
from PIL import Image
from transformers import StoppingCriteria
from .constants import DEFAULT_IMAGE_TOKEN
def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
import cv2
if fps == None or frame_count == None:
# if one of fps or frame_count is None, still recompute
fps = vidcap.get(cv2.CAP_PROP_FPS)
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
if fps == 0 or frame_count == 0:
print(f"Video file not found. return empty images. {video_file_name}")
return [
Image.new("RGB", (720, 720)),
] * num_frames, 0
duration = frame_count / fps
frame_interval = frame_count // num_frames
if frame_interval == 0 and frame_count <= 1:
print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
return [
Image.new("RGB", (720, 720)),
] * num_frames, 0
# print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval)
images = []
count = 0
success = True
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
while success:
# print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval)
if frame_count >= num_frames:
success, frame = vidcap.read()
if count in frame_indices:
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except BaseException:
continue
if len(images) >= num_frames:
return images, num_frames
count += 1
else:
# Left padding frames if the video is not long enough
success, frame = vidcap.read()
if success:
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except BaseException:
continue
count += 1
else:
break
if len(images) == 0:
raise ValueError("Did not find enough frames in the video. return empty image.")
return images, len(images)
def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
"""
num_frames is the max number of frames the model can support.
frame_count is the number of frames in the input video.
max_fps is the max FPS of the model can support.
fps is the fps of the input video.
"""
import random
import cv2
if fps == None or frame_count == None:
# if one of fps or frame_count is None, still recompute
fps = vidcap.get(cv2.CAP_PROP_FPS)
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
if fps == 0 or frame_count == 0:
print(f"Video file not found. return empty images. {video_file_name}")
empty_video_frames = int(random.uniform(2, 8 * max_fps))
return [
Image.new("RGB", (720, 720)),
] * empty_video_frames, 0
duration = frame_count / fps
# print("duration:", duration, "frames:", frame_count, "fps:", fps, "num_frames:", num_frames, "max_fps:", max_fps)
# If the video is too long (longer than max_fps and num_frames can support),
# we will use lower fps to sample frames.
if duration >= num_frames / max_fps:
frame_interval = frame_count // num_frames
# If the video is too short, we will skip the video if there is only one frame.
if frame_interval == 0 and frame_count <= 1:
print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
empty_video_frames = int(random.uniform(2, 8 * max_fps))
return [
Image.new("RGB", (720, 720)),
] * empty_video_frames, 0
images = []
count = 0
success = True
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
while success:
if frame_count >= num_frames:
# success, frame = vidcap.read()
if count in frame_indices:
success, frame = vidcap.read()
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except:
# print("Failed to read frame:", count)
continue
if len(images) >= num_frames:
return images, num_frames
else:
success = vidcap.grab()
count += 1
else:
# Left padding frames if the video is not long enough
success, frame = vidcap.read()
if success:
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except:
# print("Failed to read frame:", count)
continue
count += 1
else:
break
else:
frames_required = int(duration * max_fps)
frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int)
if frames_required == 0:
print(f"frames_required is fewer than 2. Duration {duration}, return empty image.")
empty_video_frames = int(random.uniform(2, 8 * max_fps))
return [
Image.new("RGB", (720, 720)),
] * empty_video_frames, 0
elif frames_required == 1:
frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int)
images = []
count = 0
looked = 0
success = True
while success:
success, frame = vidcap.read()
if success and (looked in frame_indices):
try:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
images.append(im_pil)
except:
continue
count += 1
looked += 1
if len(images) == 0:
empty_video_frames = int(random.uniform(2, 8 * max_fps))
return [
Image.new("RGB", (720, 720)),
] * empty_video_frames, 0
else:
return images, len(images)
def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None):
"""
Extract frames from a video using OpenCV.
Args:
vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video.
frames (int): Number of frames to extract from the video.
fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals.
Returns:
list: List of PIL Images extracted from the video.
Raises:
NotImplementedError: If the type of `vpath_or_bytesio` is not supported.
"""
import cv2
if isinstance(vpath_or_bytesio, str):
vidcap = cv2.VideoCapture(vpath_or_bytesio)
if max_fps > 0.0:
return get_frame_from_vcap_with_fps(
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
)
return get_frame_from_vcap(
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
)
elif isinstance(vpath_or_bytesio, (BytesIO,)):
# assuming mp4
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
temp_video.write(vpath_or_bytesio.read())
temp_video_name = temp_video.name
vidcap = cv2.VideoCapture(temp_video_name)
if max_fps > 0.0:
return get_frame_from_vcap_with_fps(
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
)
return get_frame_from_vcap(
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
)
else:
raise NotImplementedError(type(vpath_or_bytesio))
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def expand2square(pil_img, background_color):
"""
Expand the given PIL image to a square shape by adding padding.
Parameters:
- pil_img: The PIL image to be expanded.
- background_color: The color of the padding to be added.
Returns:
- The expanded PIL image.
If the image is already square, it is returned as is.
If the image is wider than it is tall, padding is added to the top and bottom.
If the image is taller than it is wide, padding is added to the left and right.
"""
width, height = pil_img.size
if pil_img.mode == "L":
background_color = background_color[0]
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
min_num = (s2_scales[-1] // s2_scales[0]) ** 2 # at least use number of tiles as the largest scale
processed_images = []
##########################################################################################
############# Add tiles for all but the last scale using fixed squre ratio ###############
##########################################################################################
for scale in s2_scales[:-1]:
target_width = image_size * (scale // s2_scales[0])
target_height = image_size * (scale // s2_scales[0])
blocks = (scale // s2_scales[0]) ** 2
# resize the image
resized_img = image.resize((target_width, target_height))
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
##########################################################################################
################ Add tiles for the last scale using dynamic aspect ratio #################
##########################################################################################
# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0])
def dynamic_process_images_and_prompt(images, prompt, data_args, image_folder=None, max_tiles=None):
prompt = prompt.split(DEFAULT_IMAGE_TOKEN)
idx = 0
all_images = []
for img in images:
processed_images = process_image(img, data_args, image_folder, enable_dynamic_res=True, max_tiles=max_tiles)
all_images.append(processed_images)
prompt.insert(idx + 1, f"{DEFAULT_IMAGE_TOKEN}\n" * processed_images.shape[0])
idx += 2
prompt = "".join(prompt)
if all_images:
all_images = torch.cat(all_images)
else:
all_images = None
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, "")
return all_images, prompt
def dynamic_s2_process_images_and_prompt(images, prompt, data_args, image_folder=None):
idx = 0
all_images = []
all_block_size = []
for img in images:
processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True)
all_images.append(processed_images)
all_block_size.append(block_size)
idx += 2
if all_images:
all_images = torch.cat(all_images)
else:
all_images = None
return all_images, all_block_size
def process_image(
image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None
):
processor = data_args.image_processor
if isinstance(image_file, str):
if image_folder is not None:
image = Image.open(os.path.join(image_folder, image_file)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
else:
# image is stored in bytearray
image = image_file
image = image.convert("RGB")
if hasattr(data_args.image_processor, "crop_size"):
# CLIP vision tower
crop_size = data_args.image_processor.crop_size
else:
# SIGLIP vision tower
assert hasattr(data_args.image_processor, "size")
crop_size = data_args.image_processor.size
if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2:
assert crop_size["height"] == crop_size["width"]
images, block_size = dynamic_s2_preprocess(
image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"]
)
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
return torch.stack(images), block_size
if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res:
assert crop_size["height"] == crop_size["width"]
if max_tiles is not None:
max_num = max_tiles
else:
max_num = data_args.max_tiles
images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"])
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
return torch.stack(images)
if data_args.image_aspect_ratio == "resize":
image = image.resize((crop_size["width"], crop_size["height"]))
if data_args.image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
else:
# Using default behavior of the vision encoder
# For CLIP, default is central crop
# For Radio, default is central crop
# For Siglip, default is resize
# For InternVIT, default is resize
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
return image
def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None):
model_cfg.image_processor = image_processor
new_images = [
process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles)
for image in images
]
if all(x.shape == new_images[0].shape for x in new_images):
if len(new_images[0].shape) == 4:
new_images = torch.cat(new_images, dim=0)
elif len(new_images[0].shape) == 3:
new_images = torch.stack(new_images, dim=0)
else:
raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}")
else:
raise ValueError("The shape of images in new_images is different!")
return new_images
def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
def is_gemma_tokenizer(tokenizer):
return "gemma" in tokenizer.__class__.__name__.lower()
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
self.max_keyword_len = 0
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
cur_keyword_ids = cur_keyword_ids[1:]
if len(cur_keyword_ids) > self.max_keyword_len:
self.max_keyword_len = len(cur_keyword_ids)
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
for keyword_id in self.keyword_ids:
if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all():
return True
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
outputs = []
for i in range(output_ids.shape[0]):
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
return all(outputs)
|