File size: 6,525 Bytes
fa0bd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

from typing import Any, Dict, List, Optional, Sequence

import torch
import transformers

from .constants import IGNORE_INDEX, SENTINEL_TOKEN
from .conversation import SeparatorStyle, default_conversation
from .mm_utils import tokenizer_image_token

# __all__ = [
#     "tokenize_conversation",
#     "preprocess_conversation",
#     "infer_stop_tokens",
# ]

DUMMY_CONVERSATION = [
    {"from": "human", "value": "question"},
    {"from": "gpt", "value": "answer"},
] * 10


def tokenize_conversation_legacy(
    messages: Sequence[Dict[str, str]],
    tokenizer: transformers.PreTrainedTokenizer,
    add_generation_prompt: bool = False,
    overrides: Optional[Dict[str, str]] = None,
    no_system_prompt: bool = False,
) -> torch.Tensor:
    conv = default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    if no_system_prompt:
        conv.system = ""

    # Skip the first message if it is not from human
    if messages[0]["from"] != "human":
        messages = messages[1:]

    # Add a generation prompt if needed
    if add_generation_prompt:
        messages.append({"from": "gpt", "value": None})

    conv.messages = []
    for turn, message in enumerate(messages):
        role = roles[message["from"]]
        assert role == conv.roles[turn % 2]
        if overrides is not None and message["from"] in overrides:
            conv.append_message(role, overrides[message["from"]])
        else:
            conv.append_message(role, message["value"])

    return tokenizer_image_token(conv.get_prompt(), tokenizer, return_tensors="pt")


def tokenize_conversation(
    messages: Sequence[Dict[str, str]],
    tokenizer: transformers.PreTrainedTokenizer,
    add_generation_prompt: bool = False,
    overrides: Optional[Dict[str, str]] = None,
    no_system_prompt: bool = False,
) -> torch.Tensor:
    # Normalize the conversation before tokenization
    for message in messages:
        message["value"] = message["value"].strip()

    if default_conversation.sep_style != SeparatorStyle.AUTO:
        return tokenize_conversation_legacy(
            messages,
            tokenizer,
            add_generation_prompt=add_generation_prompt,
            overrides=overrides,
            no_system_prompt=no_system_prompt,
        )

    conversation = []
    for m in messages:
        message = {}
        if m["from"] == "human":
            message["role"] = "user"
        elif m["from"] == "gpt":
            message["role"] = "assistant"
        else:
            raise ValueError(f"Unexpected sender '{m['from']}' in conversation entry.")

        message["content"] = m["value"]
        if overrides is not None and m["from"] in overrides:
            message["content"] = overrides[m["from"]]
        conversation.append(message)

    if no_system_prompt:
        conversation = [{"role": "system", "content": ""}] + conversation

    text = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=add_generation_prompt,
        tokenize=False,
    )
    return tokenizer_image_token(text, tokenizer, return_tensors="pt")


def _maybe_add_sentinel_token(tokenizer: transformers.PreTrainedTokenizer) -> None:
    if not hasattr(tokenizer, "sentinel_token"):
        tokenizer.add_tokens([SENTINEL_TOKEN], special_tokens=True)
        tokenizer.sentinel_token = SENTINEL_TOKEN
        tokenizer.sentinel_token_id = tokenizer.convert_tokens_to_ids(SENTINEL_TOKEN)


def preprocess_conversation(
    conversation: Sequence[Dict[str, str]],
    tokenizer: transformers.PreTrainedTokenizer,
    no_system_prompt: bool = False,
    retried: bool = False,
) -> Dict[str, Any]:
    inputs = tokenize_conversation(conversation, tokenizer, no_system_prompt=no_system_prompt)
    labels = torch.ones_like(inputs) * IGNORE_INDEX

    # Generate the template by replacing the assistant's response with a sentinel.
    _maybe_add_sentinel_token(tokenizer)
    template = tokenize_conversation(
        conversation, tokenizer, overrides={"gpt": SENTINEL_TOKEN}, no_system_prompt=no_system_prompt
    )

    # Remove sentinel tokens from the template.
    mask = torch.ones_like(template, dtype=torch.bool)
    for k in range(template.size(0) - 1):
        if template[k] == tokenizer.sentinel_token_id:
            mask[k : k + 2] = False
            # NOTE(zhijianl): This is to handle the corner case where there is an empty token before the sentinel token.
            if k > 0 and retried:
                mask[k - 1] = False
    template = template[mask]

    # Match the tokenized conversation with the template (with no assistant's response).
    # Every token that is not matched will be included in the label for training.
    p = 0
    for k in range(inputs.size(0)):
        if p < template.size(0) and inputs[k] == template[p]:
            p += 1
        else:
            labels[k] = inputs[k]

    # Mask all tokens in the label if the template is not fully matched.
    if p < template.size(0):
        if not retried:
            return preprocess_conversation(
                conversation,
                tokenizer,
                no_system_prompt=no_system_prompt,
                retried=True,
            )
        print(f"Failed to process the conversation: '{conversation}'. All tokens will be masked in the label.")
        labels[:] = IGNORE_INDEX

    return {"input_ids": inputs, "labels": labels}


def infer_stop_tokens(tokenizer: transformers.PreTrainedTokenizer) -> List[str]:
    _maybe_add_sentinel_token(tokenizer)
    template = tokenize_conversation(DUMMY_CONVERSATION, tokenizer, overrides={"gpt": SENTINEL_TOKEN})

    stop_tokens = {tokenizer.eos_token}
    for k in range(template.size(0) - 1):
        if template[k] == tokenizer.sentinel_token_id:
            stop_token = tokenizer.decode(template[k + 1])
            stop_tokens.add(stop_token)
    return list(stop_tokens)