File size: 8,843 Bytes
3e0c00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e352a62
3e0c00e
 
 
 
 
 
 
 
 
 
e352a62
3e0c00e
e352a62
3e0c00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e352a62
3e0c00e
 
e352a62
 
3e0c00e
 
 
 
 
 
 
 
 
 
 
e352a62
3e0c00e
 
 
 
 
 
e352a62
3e0c00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e352a62
3e0c00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e352a62
3e0c00e
 
 
 
 
 
 
 
 
 
 
e352a62
3e0c00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e352a62
3e0c00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e352a62
 
3e0c00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import math
import os
import os.path as osp
import warnings
from dataclasses import asdict
from typing import Any, Dict, List, Optional, Sequence, Tuple

import torch
import transformers
from huggingface_hub import file_exists, repo_exists
from huggingface_hub.utils import HFValidationError
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    PretrainedConfig,
    PreTrainedModel,
    PreTrainedTokenizer,
)

# from .conversation import *
from .conversation import SeparatorStyle, default_conversation

SENTINEL_TOKEN = "<vila/sentinel>"
MEDIA_TOKENS = {
    "image": "<image>",
    "video": "<vila/video>",
}

# from llava.model.utils import packing
# from llava.utils.logging import logger
# from llava.utils.tokenizer import infer_stop_tokens

DUMMY_CONVERSATION = [
    {"from": "human", "value": "question"},
    {"from": "gpt", "value": "answer"},
] * 10


def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
    return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]


def has_tokenizer(repo_id_or_path: str) -> bool:
    # Check if the tokenizer is in a local directory
    if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
        return True

    # Check if the tokenizer is in a Hugging Face Hub repo
    try:
        return repo_exists(repo_id_or_path) and file_exists(repo_id_or_path, "tokenizer_config.json")
    except HFValidationError:
        return False


def _maybe_add_sentinel_token(tokenizer: transformers.PreTrainedTokenizer) -> None:
    if not hasattr(tokenizer, "sentinel_token"):
        tokenizer.add_tokens([SENTINEL_TOKEN], special_tokens=True)
        tokenizer.sentinel_token = SENTINEL_TOKEN
        tokenizer.sentinel_token_id = tokenizer.convert_tokens_to_ids(SENTINEL_TOKEN)


def tokenize_conversation_legacy(
    messages: Sequence[Dict[str, str]],
    tokenizer: transformers.PreTrainedTokenizer,
    add_generation_prompt: bool = False,
    overrides: Optional[Dict[str, str]] = None,
    no_system_prompt: bool = False,
) -> torch.Tensor:
    conv = default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    if no_system_prompt:
        conv.system = ""

    # Skip the first message if it is not from human
    if messages[0]["from"] != "human":
        messages = messages[1:]

    # Add a generation prompt if needed
    if add_generation_prompt:
        messages.append({"from": "gpt", "value": None})

    conv.messages = []
    for turn, message in enumerate(messages):
        role = roles[message["from"]]
        assert role == conv.roles[turn % 2]
        if overrides is not None and message["from"] in overrides:
            conv.append_message(role, overrides[message["from"]])
        else:
            conv.append_message(role, message["value"])

    return tokenizer_image_token(conv.get_prompt(), tokenizer, return_tensors="pt")


def tokenize_conversation(
    messages: Sequence[Dict[str, str]],
    tokenizer: transformers.PreTrainedTokenizer,
    add_generation_prompt: bool = False,
    overrides: Optional[Dict[str, str]] = None,
    no_system_prompt: bool = False,
) -> torch.Tensor:
    # Normalize the conversation before tokenization
    for message in messages:
        message["value"] = message["value"].strip()

    if default_conversation.sep_style != SeparatorStyle.AUTO:
        return tokenize_conversation_legacy(
            messages,
            tokenizer,
            add_generation_prompt=add_generation_prompt,
            overrides=overrides,
            no_system_prompt=no_system_prompt,
        )

    conversation = []
    for m in messages:
        message = {}
        if m["from"] == "human":
            message["role"] = "user"
        elif m["from"] == "gpt":
            message["role"] = "assistant"
        else:
            raise ValueError(f"Unexpected sender '{m['from']}' in conversation entry.")

        message["content"] = m["value"]
        if overrides is not None and m["from"] in overrides:
            message["content"] = overrides[m["from"]]
        conversation.append(message)

    if no_system_prompt:
        conversation = [{"role": "system", "content": ""}] + conversation

    text = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=add_generation_prompt,
        tokenize=False,
    )
    return tokenizer_image_token(text, tokenizer, return_tensors="pt")


def infer_stop_tokens(tokenizer: transformers.PreTrainedTokenizer) -> List[str]:
    _maybe_add_sentinel_token(tokenizer)
    template = tokenize_conversation(DUMMY_CONVERSATION, tokenizer, overrides={"gpt": SENTINEL_TOKEN})

    stop_tokens = {tokenizer.eos_token}
    for k in range(template.size(0) - 1):
        if template[k] == tokenizer.sentinel_token_id:
            stop_token = tokenizer.decode(template[k + 1])
            stop_tokens.add(stop_token)
    return list(stop_tokens)


def context_length_extension(config):
    orig_ctx_len = getattr(config, "max_position_embeddings", None)
    model_max_length = getattr(config, "model_max_length", None)
    if orig_ctx_len and model_max_length > orig_ctx_len:
        print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
        scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
        config.rope_scaling = {"type": "linear", "factor": scaling_factor}
    return config


def build_llm_and_tokenizer(
    model_name_or_path: str,
    config: PretrainedConfig,
    attn_implementation=None,
    model_max_length=None,
    *args,
    **kwargs,
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
    # print(model_name_or_path)
    llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
    llm_cfg._attn_implementation = attn_implementation
    llm_cfg.model_max_length = model_max_length
    if model_max_length is not None:
        context_length_extension(llm_cfg)

    # Quantization related
    quantization_restore_from_checkpoint = False

    if quantization_restore_from_checkpoint:
        fp8_model_name_or_path = kwargs.pop("fp8_llm_cfg", None)

        llm = AutoModelForCausalLM.from_pretrained(
            fp8_model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
        )
    else:
        llm = AutoModelForCausalLM.from_pretrained(
            model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs
        )
    # NOTE(ligeng): not sure whether it affects the training
    # packing.patch(llm)

    # Locate the tokenizer.
    llm_path = model_name_or_path
    if not has_tokenizer(llm_path):
        llm_path = osp.join(llm_path, "llm")
    if not has_tokenizer(llm_path):
        raise ValueError(f"Cannot find tokenizer in {llm_path}.")

    tokenizer = AutoTokenizer.from_pretrained(llm_path, padding_side="right", use_fast=True, legacy=False)
    if model_max_length is not None:
        tokenizer.model_max_length = model_max_length

    # Load chat template if specified.
    if getattr(config, "chat_template", None) is not None:
        print(f"Using chat template: {config.chat_template}")
        fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja")
        if not os.path.exists(fpath):
            fpath = os.path.join(os.path.dirname(model_name_or_path), f"{config.chat_template}.jinja")
        with open(fpath) as fd:
            chat_template = fd.read()
        tokenizer.chat_template = chat_template.replace("    ", "").replace("\n", "")

    # NOTE(ligeng): disable temporarially, let see will any bugs introduce
    # Set stop tokens for the tokenizer
    tokenizer.stop_tokens = infer_stop_tokens(tokenizer)
    tokenizer.stop_token_ids = tokenizer.convert_tokens_to_ids(tokenizer.stop_tokens)

    # Add media tokens to the tokenizer
    tokenizer.media_tokens = MEDIA_TOKENS
    tokenizer.media_token_ids = {}
    for name, token in MEDIA_TOKENS.items():
        tokenizer.add_tokens([token], special_tokens=True)
        tokenizer.media_token_ids[name] = tokenizer.convert_tokens_to_ids(token)

    # TODO(ligeng): is this necessary for llava?
    config.hidden_size = llm.config.hidden_size
    return llm, tokenizer