File size: 12,215 Bytes
3e0c00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc1340e
e352a62
3e0c00e
 
e352a62
cc1340e
 
 
 
 
3e0c00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import torch
import torch.nn as nn
import torch.nn.functional as F
from accelerate.hooks import add_hook_to_module
from einops import rearrange

from transformers import AutoConfig, PretrainedConfig, PreTrainedModel, SiglipImageProcessor
from transformers.image_processing_utils import BaseImageProcessor
from transformers.models.siglip import SiglipVisionModel

from s2wrapper import forward as multiscale_forward

# from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
def is_deepspeed_zero3_enabled():
    return False

class VisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.select_layer = getattr(args, "mm_vision_select_layer", -2)
        self.select_feature = getattr(args, "mm_vision_select_feature", "patch")

        self.cfg_only = None

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == "patch":
            image_features = image_features[:, 1:]
        elif self.select_feature == "cls_patch":
            image_features = image_features
        else:
            raise ValueError(f"Unexpected select feature: {self.select_feature}")
        return image_features

    def _maybe_resize_pos_embeds(
        self,
        model: PreTrainedModel,
        image_processor: BaseImageProcessor,
        resolution: int = -1,
        interpolate_mode: str = "linear",
    ):
        if resolution in [model.config.image_size, -1]:
            return
        print(
            f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
        )
        embeddings = model.vision_model.embeddings
        patch_size = embeddings.patch_size
        num_new_tokens = int((resolution // patch_size) ** 2)

        old_embeddings = embeddings.position_embedding
        match interpolate_mode:
            case "linear":
                ## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
                ## Step 2:  Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
                import torch
                import torch.nn as nn

                if is_deepspeed_zero3_enabled():
                    import deepspeed

                    with deepspeed.zero.GatheredParameters([old_embeddings.weight], modifier_rank=None):
                        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
                else:
                    old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
                new_embeddings = nn.Embedding(
                    num_new_tokens,
                    old_embedding_dim,
                    dtype=old_embeddings.weight.dtype,
                    device=old_embeddings.weight.device,
                )
                mapped_indices = (
                    torch.arange(num_new_tokens).to(old_embeddings.weight.device)
                    / (num_new_tokens - 1)
                    * (old_num_tokens - 1)
                )
                floor_indices = torch.clamp(mapped_indices.floor().long(), min=0, max=old_num_tokens - 1)
                ceil_indices = torch.clamp(mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1)
                if is_deepspeed_zero3_enabled():
                    params = [old_embeddings.weight, new_embeddings.weight]
                    with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
                        interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
                            ceil_indices, :
                        ] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
                else:
                    interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
                        ceil_indices, :
                    ] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
                new_embeddings.weight.data = interpolated_embeds
            case _:
                raise NotImplementedError

        if hasattr(old_embeddings, "_hf_hook"):
            hook = old_embeddings._hf_hook
            add_hook_to_module(new_embeddings, hook)
        new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
        ## update vision encoder's configurations
        model.config.image_size = resolution
        if hasattr(image_processor, "crop_size"):
            # CLIP vision tower
            image_processor.crop_size = resolution
        else:
            # SIGLIP vision tower
            assert hasattr(image_processor, "size")
            image_processor.size = {"height": resolution, "width": resolution}
        ## TODO define a '_reinitialize' method for VisionTower
        embeddings.position_embedding = new_embeddings
        embeddings.image_size = resolution
        embeddings.num_patches = embeddings.num_positions = num_new_tokens
        embeddings.position_ids = (
            torch.arange(embeddings.num_positions).expand((1, -1)).to(old_embeddings.weight.device)
        )

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(
                    image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
                    output_hidden_states=True,
                )
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(
                images.to(device=self.device, dtype=self.dtype),
                output_hidden_states=True,
            )
            image_features = self.feature_select(image_forward_outs).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2


class VisionTowerS2(VisionTower):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__(vision_tower, args, delay_load)

        self.scales = list(map(int, args.s2_scales.split(",")))
        self.scales.sort()
        self.max_split_size = args.s2_max_split_size
        self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)

    def forward_feature(self, images):
        image_forward_outs = self.vision_tower(
            images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
        )
        image_features = self.feature_select(image_forward_outs).to(images.dtype)
        return image_features

    def forward(self, images):
        if type(images) is list:
            image_feature = []
            for image in images:
                image_feature = multiscale_forward(
                    self.forward_feature,
                    image.unsqueeze(0),
                    img_sizes=self.scales,
                    max_split_size=self.max_split_size,
                    resize_output_to_idx=self.resize_output_to_scale_idx,
                )
                image_features.append(image_feature)
        else:
            image_features = multiscale_forward(
                self.forward_feature,
                images,
                img_sizes=self.scales,
                max_split_size=self.max_split_size,
                resize_output_to_idx=self.resize_output_to_scale_idx,
            )

        return image_features

    @property
    def hidden_size(self):
        return self.config.hidden_size * len(self.scales)


class VisionTowerDynamicS2(VisionTower):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__(vision_tower, args, delay_load)

        self.scales = list(map(int, args.s2_scales.split(",")))
        self.scales.sort()
        self.max_split_size = args.s2_max_split_size
        self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)

    def forward_feature(self, images):
        image_forward_outs = self.vision_tower(
            images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
        )
        image_features = self.feature_select(image_forward_outs).to(images.dtype)
        return image_features

    def forward(self, images):
        assert type(images) is not list
        image_features = self.forward_feature(images)

        return image_features

    @property
    def hidden_size(self):
        return self.config.hidden_size * len(self.scales)


class SiglipVisionTower(VisionTower):
    def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
        super().__init__(model_name_or_path, config)
        # TODO(ligengl): why pass config here leading to errors?
        self.vision_tower = SiglipVisionModel.from_pretrained(
            model_name_or_path,
            attn_implementation=config._attn_implementation,
            torch_dtype=eval(config.model_dtype),
        )
        self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
        self.is_loaded = True


class SiglipVisionTowerS2(VisionTowerS2):
    def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
        super().__init__(model_name_or_path, config)
        self.vision_tower = SiglipVisionModel.from_pretrained(
            model_name_or_path,
            attn_implementation=config._attn_implementation,
            torch_dtype=eval(config.model_dtype),
        )
        self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
        # Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
        self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[-1]
        self.is_loaded = True


class SiglipVisionTowerDynamicS2(VisionTowerDynamicS2):
    def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
        super().__init__(model_name_or_path, config)
        self.vision_tower = SiglipVisionModel.from_pretrained(
            model_name_or_path,
            attn_implementation="flash_attention_2",
            torch_dtype=eval(config.model_dtype),
        )
        self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
        # Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
        self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[0]
        self.is_loaded = True