NVILA-Lite-2B-hf-preview / siglip_encoder.py
Ligeng-Zhu's picture
Upload files with `vila-upload`.
e352a62 verified
raw
history blame
12.2 kB
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import torch
import torch.nn as nn
import torch.nn.functional as F
from accelerate.hooks import add_hook_to_module
from einops import rearrange
from s2wrapper import forward as multiscale_forward
from transformers import AutoConfig, PretrainedConfig, PreTrainedModel, SiglipImageProcessor
from transformers.image_processing_utils import BaseImageProcessor
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
from transformers.models.siglip import SiglipVisionModel
class VisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.select_layer = getattr(args, "mm_vision_select_layer", -2)
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
self.cfg_only = None
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == "patch":
image_features = image_features[:, 1:]
elif self.select_feature == "cls_patch":
image_features = image_features
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
return image_features
def _maybe_resize_pos_embeds(
self,
model: PreTrainedModel,
image_processor: BaseImageProcessor,
resolution: int = -1,
interpolate_mode: str = "linear",
):
if resolution in [model.config.image_size, -1]:
return
print(
f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
)
embeddings = model.vision_model.embeddings
patch_size = embeddings.patch_size
num_new_tokens = int((resolution // patch_size) ** 2)
old_embeddings = embeddings.position_embedding
match interpolate_mode:
case "linear":
## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
## Step 2: Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
import torch
import torch.nn as nn
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters([old_embeddings.weight], modifier_rank=None):
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
else:
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
new_embeddings = nn.Embedding(
num_new_tokens,
old_embedding_dim,
dtype=old_embeddings.weight.dtype,
device=old_embeddings.weight.device,
)
mapped_indices = (
torch.arange(num_new_tokens).to(old_embeddings.weight.device)
/ (num_new_tokens - 1)
* (old_num_tokens - 1)
)
floor_indices = torch.clamp(mapped_indices.floor().long(), min=0, max=old_num_tokens - 1)
ceil_indices = torch.clamp(mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1)
if is_deepspeed_zero3_enabled():
params = [old_embeddings.weight, new_embeddings.weight]
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
ceil_indices, :
] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
else:
interpolated_embeds = (mapped_indices - floor_indices)[:, None] * old_embeddings.weight.data[
ceil_indices, :
] + (ceil_indices - mapped_indices)[:, None] * old_embeddings.weight.data[floor_indices, :]
new_embeddings.weight.data = interpolated_embeds
case _:
raise NotImplementedError
if hasattr(old_embeddings, "_hf_hook"):
hook = old_embeddings._hf_hook
add_hook_to_module(new_embeddings, hook)
new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
## update vision encoder's configurations
model.config.image_size = resolution
if hasattr(image_processor, "crop_size"):
# CLIP vision tower
image_processor.crop_size = resolution
else:
# SIGLIP vision tower
assert hasattr(image_processor, "size")
image_processor.size = {"height": resolution, "width": resolution}
## TODO define a '_reinitialize' method for VisionTower
embeddings.position_embedding = new_embeddings
embeddings.image_size = resolution
embeddings.num_patches = embeddings.num_positions = num_new_tokens
embeddings.position_ids = (
torch.arange(embeddings.num_positions).expand((1, -1)).to(old_embeddings.weight.device)
)
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
output_hidden_states=True,
)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(
images.to(device=self.device, dtype=self.dtype),
output_hidden_states=True,
)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
class VisionTowerS2(VisionTower):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__(vision_tower, args, delay_load)
self.scales = list(map(int, args.s2_scales.split(",")))
self.scales.sort()
self.max_split_size = args.s2_max_split_size
self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)
def forward_feature(self, images):
image_forward_outs = self.vision_tower(
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
def forward(self, images):
if type(images) is list:
image_feature = []
for image in images:
image_feature = multiscale_forward(
self.forward_feature,
image.unsqueeze(0),
img_sizes=self.scales,
max_split_size=self.max_split_size,
resize_output_to_idx=self.resize_output_to_scale_idx,
)
image_features.append(image_feature)
else:
image_features = multiscale_forward(
self.forward_feature,
images,
img_sizes=self.scales,
max_split_size=self.max_split_size,
resize_output_to_idx=self.resize_output_to_scale_idx,
)
return image_features
@property
def hidden_size(self):
return self.config.hidden_size * len(self.scales)
class VisionTowerDynamicS2(VisionTower):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__(vision_tower, args, delay_load)
self.scales = list(map(int, args.s2_scales.split(",")))
self.scales.sort()
self.max_split_size = args.s2_max_split_size
self.resize_output_to_scale_idx = getattr(args, "s2_resize_output_to_scale_idx", 0)
def forward_feature(self, images):
image_forward_outs = self.vision_tower(
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
def forward(self, images):
assert type(images) is not list
image_features = self.forward_feature(images)
return image_features
@property
def hidden_size(self):
return self.config.hidden_size * len(self.scales)
class SiglipVisionTower(VisionTower):
def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
super().__init__(model_name_or_path, config)
# TODO(ligengl): why pass config here leading to errors?
self.vision_tower = SiglipVisionModel.from_pretrained(
model_name_or_path,
attn_implementation=config._attn_implementation,
torch_dtype=eval(config.model_dtype),
)
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
self.is_loaded = True
class SiglipVisionTowerS2(VisionTowerS2):
def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
super().__init__(model_name_or_path, config)
self.vision_tower = SiglipVisionModel.from_pretrained(
model_name_or_path,
attn_implementation=config._attn_implementation,
torch_dtype=eval(config.model_dtype),
)
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
# Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[-1]
self.is_loaded = True
class SiglipVisionTowerDynamicS2(VisionTowerDynamicS2):
def __init__(self, model_name_or_path: str, config: PretrainedConfig) -> None:
super().__init__(model_name_or_path, config)
self.vision_tower = SiglipVisionModel.from_pretrained(
model_name_or_path,
attn_implementation="flash_attention_2",
torch_dtype=eval(config.model_dtype),
)
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
# Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
self.image_processor.size["height"] = self.image_processor.size["width"] = self.scales[0]
self.is_loaded = True