# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # dynamic_preprocess and find_closest_aspect_ratio are referenced from https://github.com/OpenGVLab/InternVL import base64 import os import tempfile from io import BytesIO import numpy as np import torch from PIL import Image from transformers import StoppingCriteria from .constants import DEFAULT_IMAGE_TOKEN def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None): import cv2 if fps == None or frame_count == None: # if one of fps or frame_count is None, still recompute fps = vidcap.get(cv2.CAP_PROP_FPS) frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) if fps == 0 or frame_count == 0: print(f"Video file not found. return empty images. {video_file_name}") return [ Image.new("RGB", (720, 720)), ] * num_frames, 0 duration = frame_count / fps frame_interval = frame_count // num_frames if frame_interval == 0 and frame_count <= 1: print(f"frame_interval is equal to 0. return empty image. {video_file_name}") return [ Image.new("RGB", (720, 720)), ] * num_frames, 0 # print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval) images = [] count = 0 success = True frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int) while success: # print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval) if frame_count >= num_frames: success, frame = vidcap.read() if count in frame_indices: try: img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) im_pil = Image.fromarray(img) images.append(im_pil) except BaseException: continue if len(images) >= num_frames: return images, num_frames count += 1 else: # Left padding frames if the video is not long enough success, frame = vidcap.read() if success: try: img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) im_pil = Image.fromarray(img) images.append(im_pil) except BaseException: continue count += 1 else: break if len(images) == 0: raise ValueError("Did not find enough frames in the video. return empty image.") return images, len(images) def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None): """ num_frames is the max number of frames the model can support. frame_count is the number of frames in the input video. max_fps is the max FPS of the model can support. fps is the fps of the input video. """ import random import cv2 if fps == None or frame_count == None: # if one of fps or frame_count is None, still recompute fps = vidcap.get(cv2.CAP_PROP_FPS) frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) if fps == 0 or frame_count == 0: print(f"Video file not found. return empty images. {video_file_name}") empty_video_frames = int(random.uniform(2, 8 * max_fps)) return [ Image.new("RGB", (720, 720)), ] * empty_video_frames, 0 duration = frame_count / fps # print("duration:", duration, "frames:", frame_count, "fps:", fps, "num_frames:", num_frames, "max_fps:", max_fps) # If the video is too long (longer than max_fps and num_frames can support), # we will use lower fps to sample frames. if duration >= num_frames / max_fps: frame_interval = frame_count // num_frames # If the video is too short, we will skip the video if there is only one frame. if frame_interval == 0 and frame_count <= 1: print(f"frame_interval is equal to 0. return empty image. {video_file_name}") empty_video_frames = int(random.uniform(2, 8 * max_fps)) return [ Image.new("RGB", (720, 720)), ] * empty_video_frames, 0 images = [] count = 0 success = True frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int) while success: if frame_count >= num_frames: # success, frame = vidcap.read() if count in frame_indices: success, frame = vidcap.read() try: img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) im_pil = Image.fromarray(img) images.append(im_pil) except: # print("Failed to read frame:", count) continue if len(images) >= num_frames: return images, num_frames else: success = vidcap.grab() count += 1 else: # Left padding frames if the video is not long enough success, frame = vidcap.read() if success: try: img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) im_pil = Image.fromarray(img) images.append(im_pil) except: # print("Failed to read frame:", count) continue count += 1 else: break else: frames_required = int(duration * max_fps) frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int) if frames_required == 0: print(f"frames_required is fewer than 2. Duration {duration}, return empty image.") empty_video_frames = int(random.uniform(2, 8 * max_fps)) return [ Image.new("RGB", (720, 720)), ] * empty_video_frames, 0 elif frames_required == 1: frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int) images = [] count = 0 looked = 0 success = True while success: success, frame = vidcap.read() if success and (looked in frame_indices): try: img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) im_pil = Image.fromarray(img) images.append(im_pil) except: continue count += 1 looked += 1 if len(images) == 0: empty_video_frames = int(random.uniform(2, 8 * max_fps)) return [ Image.new("RGB", (720, 720)), ] * empty_video_frames, 0 else: return images, len(images) def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None): """ Extract frames from a video using OpenCV. Args: vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video. frames (int): Number of frames to extract from the video. fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals. Returns: list: List of PIL Images extracted from the video. Raises: NotImplementedError: If the type of `vpath_or_bytesio` is not supported. """ import cv2 if isinstance(vpath_or_bytesio, str): vidcap = cv2.VideoCapture(vpath_or_bytesio) if max_fps > 0.0: return get_frame_from_vcap_with_fps( vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio ) return get_frame_from_vcap( vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio ) elif isinstance(vpath_or_bytesio, (BytesIO,)): # assuming mp4 with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video: temp_video.write(vpath_or_bytesio.read()) temp_video_name = temp_video.name vidcap = cv2.VideoCapture(temp_video_name) if max_fps > 0.0: return get_frame_from_vcap_with_fps( vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name ) return get_frame_from_vcap( vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name ) else: raise NotImplementedError(type(vpath_or_bytesio)) def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def expand2square(pil_img, background_color): """ Expand the given PIL image to a square shape by adding padding. Parameters: - pil_img: The PIL image to be expanded. - background_color: The color of the padding to be added. Returns: - The expanded PIL image. If the image is already square, it is returned as is. If the image is wider than it is tall, padding is added to the top and bottom. If the image is taller than it is wide, padding is added to the left and right. """ width, height = pil_img.size if pil_img.mode == "L": background_color = background_color[0] if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float("inf") best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = { (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num } target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size, ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height min_num = (s2_scales[-1] // s2_scales[0]) ** 2 # at least use number of tiles as the largest scale processed_images = [] ########################################################################################## ############# Add tiles for all but the last scale using fixed squre ratio ############### ########################################################################################## for scale in s2_scales[:-1]: target_width = image_size * (scale // s2_scales[0]) target_height = image_size * (scale // s2_scales[0]) blocks = (scale // s2_scales[0]) ** 2 # resize the image resized_img = image.resize((target_width, target_height)) for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size, ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) ########################################################################################## ################ Add tiles for the last scale using dynamic aspect ratio ################# ########################################################################################## # calculate the existing image aspect ratio target_ratios = { (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num } target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size, ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0]) def dynamic_process_images_and_prompt(images, prompt, data_args, image_folder=None, max_tiles=None): prompt = prompt.split(DEFAULT_IMAGE_TOKEN) idx = 0 all_images = [] for img in images: processed_images = process_image(img, data_args, image_folder, enable_dynamic_res=True, max_tiles=max_tiles) all_images.append(processed_images) prompt.insert(idx + 1, f"{DEFAULT_IMAGE_TOKEN}\n" * processed_images.shape[0]) idx += 2 prompt = "".join(prompt) if all_images: all_images = torch.cat(all_images) else: all_images = None prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, "") return all_images, prompt def dynamic_s2_process_images_and_prompt(images, prompt, data_args, image_folder=None): idx = 0 all_images = [] all_block_size = [] for img in images: processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True) all_images.append(processed_images) all_block_size.append(block_size) idx += 2 if all_images: all_images = torch.cat(all_images) else: all_images = None return all_images, all_block_size def process_image( image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None ): processor = data_args.image_processor if isinstance(image_file, str): if image_folder is not None: image = Image.open(os.path.join(image_folder, image_file)).convert("RGB") else: image = Image.open(image_file).convert("RGB") else: # image is stored in bytearray image = image_file image = image.convert("RGB") if hasattr(data_args.image_processor, "crop_size"): # CLIP vision tower crop_size = data_args.image_processor.crop_size else: # SIGLIP vision tower assert hasattr(data_args.image_processor, "size") crop_size = data_args.image_processor.size if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2: assert crop_size["height"] == crop_size["width"] images, block_size = dynamic_s2_preprocess( image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"] ) images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images] return torch.stack(images), block_size if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res: assert crop_size["height"] == crop_size["width"] if max_tiles is not None: max_num = max_tiles else: max_num = data_args.max_tiles images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"]) images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images] return torch.stack(images) if data_args.image_aspect_ratio == "resize": image = image.resize((crop_size["width"], crop_size["height"])) if data_args.image_aspect_ratio == "pad": def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean)) image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] else: # Using default behavior of the vision encoder # For CLIP, default is central crop # For Radio, default is central crop # For Siglip, default is resize # For InternVIT, default is resize image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] return image def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None): model_cfg.image_processor = image_processor new_images = [ process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles) for image in images ] if all(x.shape == new_images[0].shape for x in new_images): if len(new_images[0].shape) == 4: new_images = torch.cat(new_images, dim=0) elif len(new_images[0].shape) == 3: new_images = torch.stack(new_images, dim=0) else: raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}") else: raise ValueError("The shape of images in new_images is different!") return new_images def tokenizer_image_token(prompt, tokenizer, return_tensors=None): return tokenizer(prompt, return_tensors=return_tensors).input_ids[0] def is_gemma_tokenizer(tokenizer): return "gemma" in tokenizer.__class__.__name__.lower() def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith("checkpoint-"): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] self.max_keyword_len = 0 for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] if len(cur_keyword_ids) > self.max_keyword_len: self.max_keyword_len = len(cur_keyword_ids) self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] for keyword_id in self.keyword_ids: if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all(): return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: outputs = [] for i in range(output_ids.shape[0]): outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) return all(outputs)