File size: 51,134 Bytes
342f304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
SLURM_JOB_ID = 1038303
SLURM_JOB_NAME = nvr_elm_llm:train/NVILA-Lite-8B-quantumn-qa-train
RUN_NAME = NVILA-Lite-8B-quantumn-qa-train
OUTPUT_DIR = runs/train/NVILA-Lite-8B-quantumn-qa-train
NNODES = 8
NODES = pool0-01504 pool0-01683 pool0-01722 pool0-01867 pool0-01881 pool0-01893 pool0-01919 pool0-01939 
NODE_RANK = 4
GPUS_PER_NODE = 8
MASTER_ADDR = pool0-01504
MASTER_PORT = 25001
GLOBAL_TRAIN_BATCH_SIZE = 1024
GRADIENT_ACCUMULATION_STEPS = 4
PER_DEVICE_TRAIN_BATCH_SIZE = 4
DEFAULT_LEARNING_RATE: 2e-5
SLURM_JOB_ID = 1038303
SLURM_JOB_NAME = nvr_elm_llm:train/NVILA-Lite-8B-quantumn-qa-train
RUN_NAME = NVILA-Lite-8B-quantumn-qa-train
OUTPUT_DIR = runs/train/NVILA-Lite-8B-quantumn-qa-train
NNODES = 8
NODES = pool0-01504 pool0-01683 pool0-01722 pool0-01867 pool0-01881 pool0-01893 pool0-01919 pool0-01939 
NODE_RANK = 5
GPUS_PER_NODE = 8
MASTER_ADDR = pool0-01504
MASTER_PORT = 25001
GLOBAL_TRAIN_BATCH_SIZE = 1024
GRADIENT_ACCUMULATION_STEPS = 4
PER_DEVICE_TRAIN_BATCH_SIZE = 4
DEFAULT_LEARNING_RATE: 2e-5
SLURM_JOB_ID = 1038303
SLURM_JOB_NAME = nvr_elm_llm:train/NVILA-Lite-8B-quantumn-qa-train
RUN_NAME = NVILA-Lite-8B-quantumn-qa-train
OUTPUT_DIR = runs/train/NVILA-Lite-8B-quantumn-qa-train
NNODES = 8
NODES = pool0-01504 pool0-01683 pool0-01722 pool0-01867 pool0-01881 pool0-01893 pool0-01919 pool0-01939 
NODE_RANK = 7
GPUS_PER_NODE = 8
MASTER_ADDR = pool0-01504
MASTER_PORT = 25001
GLOBAL_TRAIN_BATCH_SIZE = 1024
GRADIENT_ACCUMULATION_STEPS = 4
PER_DEVICE_TRAIN_BATCH_SIZE = 4
DEFAULT_LEARNING_RATE: 2e-5
SLURM_JOB_ID = 1038303
SLURM_JOB_NAME = nvr_elm_llm:train/NVILA-Lite-8B-quantumn-qa-train
RUN_NAME = NVILA-Lite-8B-quantumn-qa-train
OUTPUT_DIR = runs/train/NVILA-Lite-8B-quantumn-qa-train
NNODES = 8
NODES = pool0-01504 pool0-01683 pool0-01722 pool0-01867 pool0-01881 pool0-01893 pool0-01919 pool0-01939 
NODE_RANK = 6
GPUS_PER_NODE = 8
MASTER_ADDR = pool0-01504
MASTER_PORT = 25001
GLOBAL_TRAIN_BATCH_SIZE = 1024
GRADIENT_ACCUMULATION_STEPS = 4
PER_DEVICE_TRAIN_BATCH_SIZE = 4
DEFAULT_LEARNING_RATE: 2e-5
SLURM_JOB_ID = 1038303
SLURM_JOB_NAME = nvr_elm_llm:train/NVILA-Lite-8B-quantumn-qa-train
RUN_NAME = NVILA-Lite-8B-quantumn-qa-train
OUTPUT_DIR = runs/train/NVILA-Lite-8B-quantumn-qa-train
NNODES = 8
NODES = pool0-01504 pool0-01683 pool0-01722 pool0-01867 pool0-01881 pool0-01893 pool0-01919 pool0-01939 
NODE_RANK = 1
GPUS_PER_NODE = 8
MASTER_ADDR = pool0-01504
MASTER_PORT = 25001
GLOBAL_TRAIN_BATCH_SIZE = 1024
GRADIENT_ACCUMULATION_STEPS = 4
PER_DEVICE_TRAIN_BATCH_SIZE = 4
DEFAULT_LEARNING_RATE: 2e-5
SLURM_JOB_ID = 1038303
SLURM_JOB_NAME = nvr_elm_llm:train/NVILA-Lite-8B-quantumn-qa-train
RUN_NAME = NVILA-Lite-8B-quantumn-qa-train
OUTPUT_DIR = runs/train/NVILA-Lite-8B-quantumn-qa-train
NNODES = 8
NODES = pool0-01504 pool0-01683 pool0-01722 pool0-01867 pool0-01881 pool0-01893 pool0-01919 pool0-01939 
NODE_RANK = 3
GPUS_PER_NODE = 8
MASTER_ADDR = pool0-01504
MASTER_PORT = 25001
GLOBAL_TRAIN_BATCH_SIZE = 1024
GRADIENT_ACCUMULATION_STEPS = 4
PER_DEVICE_TRAIN_BATCH_SIZE = 4
DEFAULT_LEARNING_RATE: 2e-5
SLURM_JOB_ID = 1038303
SLURM_JOB_NAME = nvr_elm_llm:train/NVILA-Lite-8B-quantumn-qa-train
RUN_NAME = NVILA-Lite-8B-quantumn-qa-train
OUTPUT_DIR = runs/train/NVILA-Lite-8B-quantumn-qa-train
NNODES = 8
NODES = pool0-01504 pool0-01683 pool0-01722 pool0-01867 pool0-01881 pool0-01893 pool0-01919 pool0-01939 
NODE_RANK = 0
GPUS_PER_NODE = 8
MASTER_ADDR = pool0-01504
MASTER_PORT = 25001
GLOBAL_TRAIN_BATCH_SIZE = 1024
GRADIENT_ACCUMULATION_STEPS = 4
PER_DEVICE_TRAIN_BATCH_SIZE = 4
DEFAULT_LEARNING_RATE: 2e-5
SLURM_JOB_ID = 1038303
SLURM_JOB_NAME = nvr_elm_llm:train/NVILA-Lite-8B-quantumn-qa-train
RUN_NAME = NVILA-Lite-8B-quantumn-qa-train
OUTPUT_DIR = runs/train/NVILA-Lite-8B-quantumn-qa-train
NNODES = 8
NODES = pool0-01504 pool0-01683 pool0-01722 pool0-01867 pool0-01881 pool0-01893 pool0-01919 pool0-01939 
NODE_RANK = 2
GPUS_PER_NODE = 8
MASTER_ADDR = pool0-01504
MASTER_PORT = 25001
GLOBAL_TRAIN_BATCH_SIZE = 1024
GRADIENT_ACCUMULATION_STEPS = 4
PER_DEVICE_TRAIN_BATCH_SIZE = 4
DEFAULT_LEARNING_RATE: 2e-5
[2025-07-01 09:21:22,856] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:22,972] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,111] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,563] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,735] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,799] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,799] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,803] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,847] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,855] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,856] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:23,911] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,002] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,003] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,019] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,021] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,028] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,030] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,113] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,232] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,243] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,247] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,251] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,253] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,311] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,311] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,328] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,330] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,332] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,369] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,369] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,370] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,371] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,372] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,376] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,424] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,429] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,442] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,446] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,452] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,465] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,518] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,542] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,543] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,563] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,564] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,579] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:24,587] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:25,700] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:25,700] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:25,775] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:25,790] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:25,791] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:25,792] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:25,864] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:25,901] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:25,906] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:26,124] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:26,215] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:26,241] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:26,247] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:26,306] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:26,306] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:26,313] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-01 09:21:26,339] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:26,339] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:26,459] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:26,459] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:26,560] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:26,561] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:26,944] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:26,944] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,281] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,281] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,322] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,322] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,339] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,339] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,459] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,459] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,513] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,513] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,516] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,516] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,549] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,549] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,571] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,571] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,582] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,583] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,583] [INFO] [comm.py:625:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
[2025-07-01 09:21:27,616] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,617] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,621] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,621] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,623] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,624] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,636] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,636] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,637] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,637] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,643] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,643] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,661] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,661] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,662] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,662] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,679] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,680] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,798] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,799] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,828] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,828] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,854] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,854] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,856] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,856] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,862] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,862] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,865] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,865] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,890] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,890] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,892] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,892] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,930] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,931] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,932] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,932] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,975] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,975] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,984] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,984] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,986] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,986] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,988] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,988] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:27,990] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:27,990] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,007] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,007] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,034] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,034] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,054] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,054] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,056] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,056] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,114] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,114] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,186] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,186] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,277] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,277] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,330] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,330] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,361] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,361] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,409] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,410] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:28,424] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:28,424] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,112] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,112] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,152] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,153] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,158] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,158] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,181] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,181] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,378] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,379] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,436] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,436] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,474] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,474] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,528] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,528] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,605] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,605] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,635] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,635] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,709] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,709] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,775] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,775] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,782] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,782] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,784] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,784] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,786] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,786] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:29,786] [WARNING] [comm.py:152:init_deepspeed_backend] NCCL backend in DeepSpeed not yet implemented
[2025-07-01 09:21:29,786] [INFO] [comm.py:594:init_distributed] cdb=None
[2025-07-01 09:21:43,807] [INFO] [partition_parameters.py:453:__exit__] finished initializing model with 7.61B parameters
[2025-07-01 09:21:52,746] [INFO] [partition_parameters.py:453:__exit__] finished initializing model with 8.03B parameters
[2025-07-01 09:21:53,403] [INFO] [partition_parameters.py:453:__exit__] finished initializing model with 8.09B parameters
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000

trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
[dist-0-of-64] LlavaLlamaModel(
  (llm): Qwen2ForCausalLM(
    (model): Qwen2Model(
      (embed_tokens): Embedding(151648, 3584)
      (layers): ModuleList(
        (0-27): 28 x Qwen2DecoderLayer(
          (self_attn): Qwen2FlashAttention2(
            (q_proj): Linear(in_features=3584, out_features=3584, bias=True)
            (k_proj): Linear(in_features=3584, out_features=512, bias=True)
            (v_proj): Linear(in_features=3584, out_features=512, bias=True)
            (o_proj): Linear(in_features=3584, out_features=3584, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=3584, out_features=18944, bias=False)
            (up_proj): Linear(in_features=3584, out_features=18944, bias=False)
            (down_proj): Linear(in_features=18944, out_features=3584, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm((0,), eps=1e-06)
          (post_attention_layernorm): Qwen2RMSNorm((0,), eps=1e-06)
        )
      )
      (norm): Qwen2RMSNorm((0,), eps=1e-06)
      (rotary_emb): Qwen2RotaryEmbedding()
    )
    (lm_head): Linear(in_features=3584, out_features=151648, bias=False)
  )
  (vision_tower): SiglipVisionTower(
    (vision_tower): SiglipVisionModel(
      (vision_model): SiglipVisionTransformer(
        (embeddings): SiglipVisionEmbeddings(
          (patch_embedding): Conv2d(3, 1152, kernel_size=(14, 14), stride=(14, 14), padding=valid)
          (position_embedding): Embedding(1024, 1152)
        )
        (encoder): SiglipEncoder(
          (layers): ModuleList(
            (0-26): 27 x SiglipEncoderLayer(
              (self_attn): SiglipFlashAttention2(
                (k_proj): Linear(in_features=1152, out_features=1152, bias=True)
                (v_proj): Linear(in_features=1152, out_features=1152, bias=True)
                (q_proj): Linear(in_features=1152, out_features=1152, bias=True)
                (out_proj): Linear(in_features=1152, out_features=1152, bias=True)
              )
              (layer_norm1): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
              (mlp): SiglipMLP(
                (activation_fn): PytorchGELUTanh()
                (fc1): Linear(in_features=1152, out_features=4304, bias=True)
                (fc2): Linear(in_features=4304, out_features=1152, bias=True)
              )
              (layer_norm2): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
            )
          )
        )
        (post_layernorm): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
      )
    )
  )
  (mm_projector): MultimodalProjector(
    (layers): Sequential(
      (0): DownSample3x3BlockFix()
      (1): LayerNorm((10368,), eps=1e-05, elementwise_affine=True)
      (2): Linear(in_features=10368, out_features=3456, bias=True)
      (3): GELU(approximate='none')
      (4): LayerNorm((3456,), eps=1e-05, elementwise_affine=True)
      (5): Linear(in_features=3456, out_features=3584, bias=True)
      (6): GELU(approximate='none')
      (7): Linear(in_features=3584, out_features=3584, bias=True)
    )
  )
)
[dist-0-of-64] Tunable parameters:
language model True
[dist-0-of-64] vision tower True
[dist-0-of-64] mm projector True
trainable params: 8,087,063,152 || all params: 8,087,063,152 || trainable%: 100.0000
[2025-07-01 09:24:26] Rank 51: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.73019170761108s
[2025-07-01 09:24:26] Rank 15: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.88804817199707s
[2025-07-01 09:24:26] Rank 61: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.51190781593323s
[2025-07-01 09:24:26] Rank 18: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.18334817886353s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:26] Rank 35: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 177.17961239814758s
[2025-07-01 09:24:26] Rank 30: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 177.50609588623047s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:26] Rank 42: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.07143235206604s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:26] Rank 50: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.9429168701172s
[2025-07-01 09:24:26] Rank 16: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.6384243965149s
[2025-07-01 09:24:26] Rank 0: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.61671090126038s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:26] Rank 11: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.24142980575562s
[2025-07-01 09:24:26] Rank 3: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.68241500854492s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 59: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.93752551078796s
[2025-07-01 09:24:27] Rank 36: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 177.47626900672913s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 43: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.4129433631897s
[2025-07-01 09:24:27] Rank 39: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.0158293247223s
[2025-07-01 09:24:27] Rank 38: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 177.80202722549438s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 10: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.43888783454895s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 60: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.1183044910431s
[2025-07-01 09:24:27] Rank 49: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.2389600276947s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 57: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.06473851203918s
[2025-07-01 09:24:27] Rank 63: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.11095666885376s
[2025-07-01 09:24:27] Rank 41: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.51858401298523s
[2025-07-01 09:24:27] Rank 52: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.30554270744324s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 40: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.5245840549469s
[2025-07-01 09:24:27] Rank 21: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 180.82316184043884s
[2025-07-01 09:24:27] Rank 37: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 177.645690202713s
[2025-07-01 09:24:27] Rank 56: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.1373429298401s
[2025-07-01 09:24:27] Rank 7: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.96211647987366s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 9: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.6913924217224s
[2025-07-01 09:24:27] Rank 32: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 177.7236123085022s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 26: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.0112874507904s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 1: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 180.98196148872375s
[2025-07-01 09:24:27] Rank 12: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 180.38428473472595s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 23: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.83022689819336s
[2025-07-01 09:24:27] Rank 62: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.28459119796753s
[2025-07-01 09:24:27] Rank 33: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 177.73978686332703s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 53: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.41727900505066s
[2025-07-01 09:24:27] Rank 34: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 177.72356247901917s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 44: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 180.81957077980042s
[2025-07-01 09:24:27] Rank 13: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.6111810207367s
[2025-07-01 09:24:27] Rank 20: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.8662896156311s
[2025-07-01 09:24:27] Rank 58: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.25026488304138s
[2025-07-01 09:24:27] Rank 25: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.25618314743042s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 4: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 180.23809123039246s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 27: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.11056566238403s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 46: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.69872188568115s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 14: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.87972497940063s
[2025-07-01 09:24:27] Rank 8: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.7657687664032s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 5: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 180.11463713645935s
[2025-07-01 09:24:27] Rank 2: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 180.15511107444763s
[2025-07-01 09:24:27] Rank 22: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.94539523124695s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 48: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.58666896820068s
[2025-07-01 09:24:27] Rank 17: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.94371223449707s
[2025-07-01 09:24:27] Rank 54: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.51171231269836s
[2025-07-01 09:24:27] Rank 6: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 180.14709281921387s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 19: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.9675374031067s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 28: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.3642818927765s
[2025-07-01 09:24:27] Rank 31: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.2817325592041s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 47: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.9938542842865s
[2025-07-01 09:24:27] Rank 24: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.28741884231567s
[2025-07-01 09:24:27] Rank 29: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 178.41006183624268s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[2025-07-01 09:24:27] Rank 55: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.64781546592712s
[2025-07-01 09:24:27] Rank 45: Timer for terminate callback has been set.
Total limit: 240min
Pre terminate time: 10min elapsed_time: 179.78166794776917s
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
length of dataloader: 52 13312
[GPU memory] before trainer 2.292407512664795
Parameter Offload: Total persistent parameters: 771184 in 421 params
{'loss': 1.2648, 'grad_norm': 130.75577214745246, 'learning_rate': 2e-05, 'epoch': 0.08}
{'loss': 1.2283, 'grad_norm': 126.67616596972118, 'learning_rate': 1.9659258262890683e-05, 'epoch': 0.15}
[2025-07-01 09:25:57,641] [WARNING] [stage3.py:1850:step] 1 pytorch allocator cache flushes since last step. this happens when there is high memory pressure and is detrimental to performance. if this is happening frequently consider adjusting settings to reduce memory consumption. If you are unable to make the cache flushes go away consider adding get_accelerator().empty_cache() calls in your training loop to ensure that all ranks flush their caches at the same time
{'loss': 0.4188, 'grad_norm': 56.84219933724937, 'learning_rate': 1.866025403784439e-05, 'epoch': 0.23}
{'loss': 2.4789, 'grad_norm': 89.42666319016989, 'learning_rate': 1.7071067811865477e-05, 'epoch': 0.31}
{'loss': 0.7853, 'grad_norm': 72.41844398977439, 'learning_rate': 1.5000000000000002e-05, 'epoch': 0.38}
{'loss': 8.2197, 'grad_norm': 799.0148731599335, 'learning_rate': 1.2588190451025209e-05, 'epoch': 0.46}
{'loss': 0.3008, 'grad_norm': 34.525610403243014, 'learning_rate': 1e-05, 'epoch': 0.54}
{'loss': 0.3999, 'grad_norm': 64.98250527603693, 'learning_rate': 7.411809548974792e-06, 'epoch': 0.62}
{'loss': 0.2575, 'grad_norm': 11.46902235575636, 'learning_rate': 5.000000000000003e-06, 'epoch': 0.69}
[2025-07-01 09:28:31,764] [WARNING] [stage3.py:1850:step] 1 pytorch allocator cache flushes since last step. this happens when there is high memory pressure and is detrimental to performance. if this is happening frequently consider adjusting settings to reduce memory consumption. If you are unable to make the cache flushes go away consider adding get_accelerator().empty_cache() calls in your training loop to ensure that all ranks flush their caches at the same time
{'loss': 0.3174, 'grad_norm': 42.63293180170212, 'learning_rate': 2.9289321881345257e-06, 'epoch': 0.77}
{'loss': 0.3054, 'grad_norm': 40.64988981794197, 'learning_rate': 1.339745962155613e-06, 'epoch': 0.85}
{'loss': 0.2827, 'grad_norm': 27.588182133457394, 'learning_rate': 3.4074173710931804e-07, 'epoch': 0.92}
{'loss': 0.2751, 'grad_norm': 17.48926557604337, 'learning_rate': 0.0, 'epoch': 1.0}
saving llm to runs/train/NVILA-Lite-8B-quantumn-qa-train/model/tmp-checkpoint-13/llm
saving vision_tower to runs/train/NVILA-Lite-8B-quantumn-qa-train/model/tmp-checkpoint-13/vision_tower
saving mm_projector to runs/train/NVILA-Lite-8B-quantumn-qa-train/model/tmp-checkpoint-13/mm_projector
{'train_runtime': 323.0635, 'train_samples_per_second': 41.206, 'train_steps_per_second': 0.04, 'train_loss': 1.2718768601234143, 'epoch': 1.0}
saving llm to runs/train/NVILA-Lite-8B-quantumn-qa-train/model/llm
saving vision_tower to runs/train/NVILA-Lite-8B-quantumn-qa-train/model/vision_tower
saving mm_projector to runs/train/NVILA-Lite-8B-quantumn-qa-train/model/mm_projector
wandb: 
wandb: 🚀 View run NVILA-Lite-8B-quantumn-qa-train at: https://wandb.ai/ligeng-zhu/vila/runs/NVILA-Lite-8B-quantumn-qa-train