Lawrence-cj commited on
Commit
d9de23a
·
verified ·
1 Parent(s): b840f59

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -0
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sana
3
+ tags:
4
+ - text-to-image
5
+ - Sana
6
+ - 512px_based_image_size
7
+ - Multi-language
8
+ language:
9
+ - en
10
+ - zh
11
+ base_model:
12
+ - Efficient-Large-Model/Sana_1600M_512px_diffusers
13
+ pipeline_tag: text-to-image
14
+ ---
15
+ <p align="center" style="border-radius: 10px">
16
+ <img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="35%" alt="logo"/>
17
+ </p>
18
+
19
+ <div style="display:flex;justify-content: center">
20
+ <a href="https://huggingface.co/collections/Efficient-Large-Model/sana-673efba2a57ed99843f11f9e"><img src="https://img.shields.io/static/v1?label=Demo&message=Huggingface&color=yellow"></a> &ensp;
21
+ <a href="https://github.com/NVlabs/Sana"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github"></a> &ensp;
22
+ <a href="https://nvlabs.github.io/Sana/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a> &ensp;
23
+ <a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a> &ensp;
24
+ <a href="https://arxiv.org/abs/2410.10629"><img src="https://img.shields.io/static/v1?label=Arxiv&message=Sana&color=red&logo=arxiv"></a> &ensp;
25
+ <a href="https://nv-sana.mit.edu/"><img src="https://img.shields.io/static/v1?label=Demo&message=MIT&color=yellow"></a> &ensp;
26
+ <a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a> &ensp;
27
+ </div>
28
+
29
+ # Model card
30
+
31
+ We introduce **Sana**, a text-to-image framework that can efficiently generate images up to 4096 × 4096 resolution.
32
+ Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU.
33
+
34
+ Source code is available at https://github.com/NVlabs/Sana.
35
+
36
+ # Note
37
+ - Weakness in Complex Scene Creation: Due to limitation of data, our model has **limited** capabilities in generating complex scenes, text, and human hands.
38
+ - **Enhancing Capabilities**: The model’s performance can be improved by **increasing the complexity and length of prompts**. Below are some examples of **prompts and samples**.
39
+
40
+ ### Model Description
41
+
42
+ - **Developed by:** NVIDIA, Sana
43
+ - **Model type:** Linear-Diffusion-Transformer-based text-to-image generative model
44
+ - **Model size:** 1648M parameters
45
+ - **Model resolution:** This model is developed to generate 512px based images with multi-scale heigh and width.
46
+ - **License:** [NSCL v2-custom](./LICENSE.txt). Governing Terms: NVIDIA License. Additional Information: [Gemma Terms of Use | Google AI for Developers](https://ai.google.dev/gemma/terms) for Gemma-2-2B-IT, [Gemma Prohibited Use Policy | Google AI for Developers](https://ai.google.dev/gemma/prohibited_use_policy).
47
+ - **Model Description:** This is a model that can be used to generate and modify images based on text prompts.
48
+ It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders ([Gemma2-2B-IT](https://huggingface.co/google/gemma-2-2b-it))
49
+ and one 32x spatial-compressed latent feature encoder ([DC-AE](https://hanlab.mit.edu/projects/dc-ae)).
50
+ - **Resources for more information:** Check out our [GitHub Repository](https://github.com/NVlabs/Sana) and the [Sana report on arXiv](https://arxiv.org/abs/2410.10629).
51
+
52
+ ### Model Sources
53
+
54
+ For research purposes, we recommend our `generative-models` Github repository (https://github.com/NVlabs/Sana),
55
+ which is more suitable for both training and inference and for which most advanced diffusion sampler like Flow-DPM-Solver is integrated.
56
+ [MIT Han-Lab](https://nv-sana.mit.edu/) provides free Sana inference.
57
+ - **Repository:** https://github.com/NVlabs/Sana
58
+
59
+ ### 🧨 Diffusers
60
+
61
+ ### 1. How to use `SanaPipeline` with `🧨diffusers`
62
+
63
+ > \[!IMPORTANT\]
64
+ > Make sure to specify `pipe.transformer` to default `torch_dtype` and `variant` according to [Model Card](asset/docs/model_zoo.md).
65
+ >
66
+ > Set `pipe.text_encoder` to BF16 and `pipe.vae` to FP32 or BF16. For more info, [docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/sana#sanapipeline) are here.
67
+
68
+ ```python
69
+ # run `pip install git+https://github.com/huggingface/diffusers` before use Sana in diffusers
70
+ import torch
71
+ from diffusers import SanaPipeline
72
+
73
+ pipe = SanaPipeline.from_pretrained(
74
+ "Efficient-Large-Model/Sana_1600M_512px_diffusers",
75
+ variant="fp16",
76
+ torch_dtype=torch.float16,
77
+ )
78
+ pipe.to("cuda")
79
+
80
+ pipe.vae.to(torch.bfloat16)
81
+ pipe.text_encoder.to(torch.bfloat16)
82
+
83
+ prompt = 'A cute 🐼 eating 🎋, ink drawing style'
84
+ image = pipe(
85
+ prompt=prompt,
86
+ height=512,
87
+ width=512,
88
+ guidance_scale=4.5,
89
+ num_inference_steps=20,
90
+ generator=torch.Generator(device="cuda").manual_seed(42),
91
+ )[0]
92
+
93
+ image[0].save("sana.png")
94
+ ```
95
+
96
+ ### 2. How to use `SanaPAGPipeline` with `🧨diffusers`
97
+
98
+ ```python
99
+ # run `pip install git+https://github.com/huggingface/diffusers` before use Sana in diffusers
100
+ import torch
101
+ from diffusers import SanaPAGPipeline
102
+
103
+ pipe = SanaPAGPipeline.from_pretrained(
104
+ "Efficient-Large-Model/Sana_1600M_512px_diffusers",
105
+ variant="fp16",
106
+ torch_dtype=torch.float16,
107
+ pag_applied_layers="transformer_blocks.8",
108
+ )
109
+ pipe.to("cuda")
110
+
111
+ pipe.text_encoder.to(torch.bfloat16)
112
+ pipe.vae.to(torch.bfloat16)
113
+
114
+ prompt = 'A cute 🐼 eating 🎋, ink drawing style'
115
+ image = pipe(
116
+ prompt=prompt,
117
+ height=512,
118
+ width=512,
119
+ guidance_scale=5.0,
120
+ pag_scale=2.0,
121
+ num_inference_steps=20,
122
+ generator=torch.Generator(device="cuda").manual_seed(42),
123
+ )[0]
124
+ image[0].save('sana.png')
125
+ ```
126
+
127
+ ## Uses
128
+
129
+ ### Direct Use
130
+
131
+ The model is intended for research purposes only. Possible research areas and tasks include
132
+
133
+ - Generation of artworks and use in design and other artistic processes.
134
+ - Applications in educational or creative tools.
135
+ - Research on generative models.
136
+ - Safe deployment of models which have the potential to generate harmful content.
137
+
138
+ - Probing and understanding the limitations and biases of generative models.
139
+
140
+ Excluded uses are described below.
141
+
142
+ ### Out-of-Scope Use
143
+
144
+ The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
145
+
146
+ ## Limitations and Bias
147
+
148
+ ### Limitations
149
+
150
+ - The model does not achieve perfect photorealism
151
+ - The model cannot render complex legible text
152
+ - fingers, .etc in general may not be generated properly.
153
+ - The autoencoding part of the model is lossy.
154
+
155
+ ### Bias
156
+ While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.