File size: 52,411 Bytes
c5f696d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 |
import copy
import json
import logging
import math
import os
import os.path
import os.path as osp
import shutil
import warnings
from abc import ABC
from collections import OrderedDict, defaultdict, deque
from copy import deepcopy
from itertools import chain
from threading import Thread
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from einops import rearrange
from PIL import Image
from transformers import (
AutoConfig,
AutoModel,
AutoProcessor,
AutoTokenizer,
GenerationConfig,
LogitsProcessor,
PretrainedConfig,
PreTrainedModel,
Qwen2Config,
Qwen2ForCausalLM,
Qwen2PreTrainedModel,
TextIteratorStreamer,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import ContextManagers, no_init_weights
from .base_projector import MultimodalProjector, MultimodalProjectorConfig
from .builder import build_llm_and_tokenizer
from .configuration_vila import VILAConfig
from .constants import *
from .conversation import SeparatorStyle, default_conversation
from .media import extract_media
from .media_encoder import BasicImageEncoder, BasicVideoEncoder
from .mm_utils import process_image, process_images
from .siglip_encoder import SiglipVisionTower, SiglipVisionTowerDynamicS2, SiglipVisionTowerS2
from .tokenizer_utils import tokenize_conversation
from .utils import get_model_config
# from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS
# quick hack for remote code
def get_pg_manager():
return None
def get_model_weights_dtype(model: nn.Module):
pass
def build_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
if model_type_or_path is None:
return None
## load from pretrained model
if config.resume_path:
assert os.path.exists(model_type_or_path), f"Resume mm projector path {model_type_or_path} does not exist!"
return MultimodalProjector.from_pretrained(model_type_or_path, config)
## build from scratch
else:
mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
mm_projector = MultimodalProjector(mm_projector_cfg, config)
return mm_projector
def check_dot_in_model_path(model_path: str):
"""Check if the model path contains dot, which will affect the remote code loading."""
if osp.isdir(model_path): # local model
if "." in osp.abspath(model_path):
return True
else: # remote model
if "." in model_path:
return True
return False
def get_vila_version(model_path: str) -> str:
VERSIONS = ["vila1.5", "vila-u", "longvila", "nvila", "vila-m3"]
for version in VERSIONS:
if version in model_path.lower():
return version
return None
def generate_jinja_template(conv_mode: str) -> str:
if conv_mode == "vicuna_v1":
return """{% set system_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." %}
{% set roles = ["USER", "ASSISTANT"] %}
{% set sep = " " %}
{% set sep2 = "</s>" %}
{{ system_prompt }}
{% for message in messages %}
{% if message['role'] == roles[0] %}
{{ roles[0] }}{{ sep }}{{ message['content'] }}{{ sep2 }}
{% else %}
{{ roles[1] }}{{ sep }}{{ message['content'] }}{{ sep2 }}
{% endif %}
{% endfor %}"""
elif conv_mode == "llama_3":
return """{% set system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." %}
{% set roles = ["<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"] %}
{% set sep = "<|eot_id|>" %}
{% set sep2 = "<|end_of_text|>" %}
{{ system_prompt }}
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ roles[0] }}{{ message['content'] }}{{ sep }}
{% else %}
{{ roles[1] }}{{ message['content'] }}{{ sep }}
{% endif %}
{% endfor %}
{{ sep2 }}"""
elif conv_mode == "hermes_2":
return """{% set system_prompt = "<|im_start|>system\nAnswer the questions." %}
{% set roles = ["<|im_start|>user\n", "<|im_start|>assistant\n"] %}
{% set sep = "<|im_end|>" %}
{{ system_prompt }}{{ sep }}
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ roles[0] }}{{ message['content'] }}{{ sep }}
{% else %}
{{ roles[1] }}{{ message['content'] }}{{ sep }}
{% endif %}
{% endfor %}"""
else:
raise NotImplementedError(f"Jinja template generation is not implemented for {conv_mode}.")
def build_vision_tower(model_name_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
## skip vision tower instantiation
if model_name_or_path is None:
return None
vision_tower_arch = None
if config.resume_path and "radio" not in model_name_or_path:
assert os.path.exists(model_name_or_path), f"Resume vision tower path {model_name_or_path} does not exist!"
vision_tower_cfg = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
vision_tower_arch = vision_tower_cfg.architectures[0].lower()
vision_tower_name = vision_tower_arch if vision_tower_arch is not None else model_name_or_path
use_s2 = getattr(config, "s2", False)
use_dynamic_s2 = getattr(config, "dynamic_s2", False)
if "siglip" in vision_tower_name:
if use_dynamic_s2:
vision_tower = SiglipVisionTowerDynamicS2(model_name_or_path, config)
elif use_s2:
vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
else:
vision_tower = SiglipVisionTower(model_name_or_path, config)
else:
raise NotImplementedError(f"Unknown vision tower: {model_name_or_path}")
config.mm_hidden_size = (
vision_tower.config.hidden_size if not (use_s2 or use_dynamic_s2) else vision_tower.hidden_size
)
return vision_tower
class VILAPretrainedModel(PreTrainedModel):
config_class = VILAConfig
main_input_name = "input_embeds"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
def __init__(self, config: VILAConfig, *args, **kwargs):
super().__init__(config)
self.config = config
cfgs = get_model_config(config)
if len(cfgs) == 3:
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
else:
raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.")
# loading on cpu by default
device_map = kwargs.get("device_map", "cpu")
self.mm_projector = build_mm_projector(mm_projector_cfg, config)
self.vision_tower = build_vision_tower(vision_tower_cfg, config)
if "auto" in device_map or "cuda" in device_map:
self.mm_projector = self.mm_projector.cuda()
self.vision_tower = self.vision_tower.cuda()
# set device_map auto can autoamtically shard llm to different devices
self.llm, self.tokenizer = self.init_llm(llm_cfg, config, device_map=device_map)
self.encoders = {"image": BasicImageEncoder(self), "video": BasicVideoEncoder(self)}
self.post_config()
self.is_loaded = True
assert (
self.llm is not None or self.vision_tower is not None or self.mm_projector is not None
), "At least one of the components must be instantiated."
@classmethod
def convert_vila_dev_ckpt_to_remote(
self,
model_path: str,
output_dir: str = None,
vila_version: str | None = None,
conv_mode: str | None = None,
*model_args,
**kwargs,
):
# assert type(self) == VILAForCasualLM, "This method is only available for VILAForCasualLM."
from huggingface_hub import HfApi, snapshot_download
if os.path.isdir(model_path):
model_path = model_path
api = HfApi()
if check_dot_in_model_path(model_path) and output_dir is None:
raise ValueError(
f"Model path {model_path} contains a dot, which will affect the remote code loading. Please specify the output directory without dot in the path to fix this issue."
)
if output_dir is not None and "." in output_dir:
raise ValueError(
f"Output directory {output_dir} contains a dot, which will affect the remote code loading. Please specify a valid output directory without dots."
)
if vila_version is None:
vila_version = get_vila_version(model_path)
if api.repo_exists(model_path):
model_path = snapshot_download(model_path, local_dir=output_dir)
print("downloading HF model to", model_path)
cfg_path = os.path.join(model_path, "config.json")
config = json.load(open(cfg_path))
config["version"] = "2.0" # nvila tag
config["architectures"] = ["VILAForCasualLM"]
config["auto_map"] = {
"AutoConfig": "modeling_vila.VILAConfig",
"AutoModel": "modeling_vila.VILAForCasualLM",
"AutoModelForCausalLM": "modeling_vila.VILAForCasualLM",
}
config["model_type"] = "vila"
if vila_version in ["vila1.5", "vila-m3"]:
if conv_mode is None:
raise ValueError(f"Please specify the conversation mode for {model_path}.")
config["chat_template"] = conv_mode
jinja_template = generate_jinja_template(conv_mode)
jinja_path = os.path.join(model_path, f"{conv_mode}.jinja")
with open(jinja_path, "w") as f:
f.write(jinja_template)
json.dump(config, open(cfg_path, "w"), indent=2)
self.copy_remote_py_files(model_path)
@classmethod
def copy_remote_py_files(cls, output_dir):
## copy .py and REAMDE for next loading remote code
current_file_path = os.path.abspath(__file__)
current_folder = os.path.dirname(current_file_path)
for file_name in os.listdir(current_folder):
if file_name.endswith(".py") or file_name.endswith(".jinja"):
full_file_name = os.path.join(current_folder, file_name)
if os.path.isfile(full_file_name):
shutil.copy(full_file_name, output_dir)
print("[HF remote code] copying", full_file_name, "to", output_dir)
def save_pretrained(self, output_dir, state_dict=None):
if state_dict is None:
# other wise fetch from deepspeed
# state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
state_dict = self.state_dict()
if getattr(self, "tokenizer", None):
self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))
if self.get_llm():
print(f"saving llm to {osp.join(output_dir, 'llm')}")
self.llm.config._name_or_path = osp.join(output_dir, "llm")
llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k})
self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict)
self.config.llm_cfg = self.llm.config
if self.get_vision_tower():
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
self.vision_tower.config._name_or_path = osp.join(output_dir, "vision_tower")
vision_tower_state_dict = OrderedDict(
{k.split("vision_tower.vision_tower.")[-1]: v for k, v in state_dict.items() if "vision_tower" in k}
)
self.vision_tower.vision_tower.save_pretrained(
os.path.join(output_dir, "vision_tower"),
state_dict=vision_tower_state_dict,
)
self.vision_tower.image_processor.save_pretrained(os.path.join(output_dir, "vision_tower"))
self.config.vision_tower_cfg = self.vision_tower.config
if hasattr(self.config.vision_tower_cfg, "auto_map"):
if "radio" not in self.get_vision_tower().__class__.__name__.lower():
delattr(self.config.vision_tower_cfg, "auto_map")
if self.get_mm_projector():
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
self.mm_projector.config._name_or_path = osp.join(output_dir, "mm_projector")
mm_projector_state_dict = OrderedDict(
{k.split("mm_projector.")[-1]: v for k, v in state_dict.items() if "mm_projector" in k}
)
self.mm_projector.save_pretrained(
os.path.join(output_dir, "mm_projector"),
state_dict=mm_projector_state_dict,
)
self.config.mm_projector_cfg = self.mm_projector.config
## update and save top-level config
self.config._name_or_path = output_dir
self.config.architectures = [self.__class__.__name__]
self.config.save_pretrained(output_dir)
## copy .py and REAMDE for next loading remote code
self.copy_remote_py_files(output_dir)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[str] = None,
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: Optional[bool] = None,
weights_only: bool = True,
**kwargs,
):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
return cls._from_config(config, **kwargs)
def init_llm(self, llm_config, config, *args, **kwargs):
self.llm, self.tokenizer = build_llm_and_tokenizer(llm_config, config, *args, **kwargs)
# hard coded for NVILA
# variables for XGrammar
# print("DEBUG", len(self.tokenizer.added_tokens_encoder.keys()), self.tokenizer.added_tokens_encoder.keys())
NUM_EXTRA_TOKENS = len(self.tokenizer.added_tokens_encoder.keys())
# TODO: SENTINEL_TOKEN is not added, need to check with Zhijian
self.vocab_size = self.tokenizer.vocab_size + NUM_EXTRA_TOKENS
# XGrammar tokenizer and grammar compiler
# lazy init only when specified json output during inference
self.grammar_compiler = None
self.llm.resize_token_embeddings(len(self.tokenizer))
return self.llm, self.tokenizer
def post_config(self):
######################################################################
# TODO: need to check dtype with jason
self.llm = self.llm.to(torch.float16)
self.mm_projector = self.mm_projector.to(torch.float16)
self.vision_tower = self.vision_tower.to(torch.float16)
######################################################################
self.training = self.llm.training
## configuration
if getattr(self.config, "llm_cfg", None) is None:
self.config.llm_cfg = self.llm.config
if getattr(self.config, "vision_tower_cfg", None) is None:
self.config.vision_tower_cfg = self.vision_tower.config
if getattr(self.config, "mm_projector_cfg", None) is None:
self.config.mm_projector_cfg = self.mm_projector.config
def get_llm(self):
llm = getattr(self, "llm", None)
if type(llm) is list:
llm = llm[0]
return llm
def get_lm_head(self):
lm_head = getattr(self.get_llm(), "lm_head", None)
return lm_head
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_mm_projector(self):
mm_projector = getattr(self, "mm_projector", None)
if type(mm_projector) is list:
mm_projector = mm_projector[0]
return mm_projector
def freezed_module_patch(self):
"""
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
"""
if self.training:
if self.get_llm() and not getattr(self.config, "tune_language_model", False):
pass
# logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
if self.get_vision_tower() and not getattr(self.config, "tune_vision_tower", False):
self.get_vision_tower().eval()
if self.get_mm_projector() and not getattr(self.config, "tune_mm_projector", False):
self.get_mm_projector().eval()
class VILAForCasualLM(VILAPretrainedModel):
def __init__(self, config: VILAConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
def merge_features_for_dynamic_s2(self, image_features, block_sizes):
scales = self.get_vision_tower().scales
resize_output_to_scale_idx = self.get_vision_tower().resize_output_to_scale_idx
image_features_each_image = []
new_block_sizes = []
block_cnt = 0
for block_size_each_image in block_sizes:
if block_size_each_image is None:
cur_features = image_features[block_cnt : block_cnt + 1]
cur_features = rearrange(cur_features, "1 (h w) c -> 1 c h w", h=int(cur_features.shape[1] ** 0.5))
cur_features = cur_features.repeat(1, len(scales), 1, 1)
image_features_each_image.append(cur_features)
new_block_sizes.append((1, 1))
block_cnt += 1
else:
cur_features_each_scale = []
for scale in scales[:-1]:
num_blocks_this_scale = (scale // scales[0]) ** 2
cur_features_each_scale.append(
self.merge_chessboard(
image_features[block_cnt : block_cnt + num_blocks_this_scale],
num_split_h=scale // scales[0],
num_split_w=scale // scales[0],
)
) # 1 * C * H * W
block_cnt += num_blocks_this_scale
num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1]
cur_features_each_scale.append(
self.merge_chessboard(
image_features[block_cnt : block_cnt + num_blocks_last_scale],
num_split_h=block_size_each_image[0],
num_split_w=block_size_each_image[1],
)
) # 1 * C * H * W
block_cnt += num_blocks_last_scale
# resize and concat features from different scales
output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:]
cur_features = torch.cat(
[
F.interpolate(cur_features_each_scale[i].to(torch.float32), size=output_size, mode="area").to(
cur_features_each_scale[i].dtype
)
for i in range(len(cur_features_each_scale))
],
dim=1,
)
# cur_features = rearrange(cur_features, "1 c h w -> (h w) c")
image_features_each_image.append(cur_features)
if resize_output_to_scale_idx == len(scales) - 1 or resize_output_to_scale_idx == -1:
new_block_sizes.append(block_size_each_image)
else:
new_block_sizes.append(
(
scales[resize_output_to_scale_idx] // scales[0],
scales[resize_output_to_scale_idx] // scales[0],
)
)
assert block_cnt == len(image_features)
return image_features_each_image, new_block_sizes
def encode_images(self, images, block_sizes: Optional[Optional[Tuple[int, ...]]] = None):
if block_sizes is None:
block_sizes = [None] * len(images)
if getattr(self.config, "dynamic_s2", False):
image_features = self.get_vision_tower()(images)
image_features, new_block_sizes = self.merge_features_for_dynamic_s2(image_features, block_sizes)
image_features = [
self.split_chessboard(x, block_size[0], block_size[1])
for x, block_size in zip(image_features, new_block_sizes)
] # list of B * C * H * W tensors
image_features = torch.cat(
[rearrange(x, "b c h w -> b (h w) c") for x in image_features], dim=0
) # B * N * C
image_features = self.get_mm_projector()(image_features)
image_features = list(
image_features.split([block_size[0] * block_size[1] for block_size in new_block_sizes], dim=0)
)
image_features = [
self.merge_chessboard(x, block_size[0], block_size[1])
for x, block_size in zip(image_features, new_block_sizes)
] # list of 1 * C * H * W tensors
image_features = [rearrange(x, "1 c h w -> (h w) c") for x in image_features] # list of N * C tensors
if all([feature.shape[0] == image_features[0].shape[0] for feature in image_features]):
image_features = torch.stack(image_features, dim=0)
else:
image_features = self.get_vision_tower()(images)
image_features = self.get_mm_projector()(image_features)
return image_features
def _embed(
self,
input_ids: torch.Tensor,
media: Dict[str, List[torch.Tensor]],
media_config: Dict[str, Dict[str, Any]],
labels: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX)
attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool)
# PROCESS_GROUP_MANAGER = get_pg_manager()
PROCESS_GROUP_MANAGER = None
if PROCESS_GROUP_MANAGER is not None:
for name in media:
self.encoders[name].end_tokens = None
# Extract text and media embeddings
text_embeds = self.llm.model.embed_tokens(input_ids)
media_embeds = self.__embed_media_tokens(media, media_config)
# This is a workaround to make sure the dummy embeddings are consumed
while media_embeds.get("dummy"):
dummy_embed = media_embeds["dummy"].popleft()
text_embeds += torch.sum(dummy_embed) * 0
# Remove padding
batch_size = labels.shape[0]
text_embeds = [text_embeds[k][attention_mask[k]] for k in range(batch_size)]
labels = [labels[k][attention_mask[k]] for k in range(batch_size)]
# Build inverse mapping from token ID to media name
media_tokens = {}
for name, token_id in self.tokenizer.media_token_ids.items():
media_tokens[token_id] = name
# Fuse text and media embeddings
inputs_m, labels_m = [], []
for k in range(batch_size):
inputs_mk, labels_mk = [], []
pos = 0
while pos < len(labels[k]):
if input_ids[k][pos].item() in media_tokens:
end = pos + 1
name = media_tokens[input_ids[k][pos].item()]
input = media_embeds[name].popleft()
label = torch.full([input.shape[0]], IGNORE_INDEX, device=labels[k].device, dtype=labels[k].dtype)
else:
end = pos
while end < len(labels[k]) and input_ids[k][end].item() not in media_tokens:
end += 1
input = text_embeds[k][pos:end]
label = labels[k][pos:end]
inputs_mk.append(input)
labels_mk.append(label)
pos = end
inputs_m.append(torch.cat(inputs_mk, dim=0))
labels_m.append(torch.cat(labels_mk, dim=0))
inputs, labels = inputs_m, labels_m
# Check if all media embeddings are consumed
for name in media_embeds:
if media_embeds[name]:
raise ValueError(f"Not all {name} embeddings are consumed!")
# Truncate sequences to `model_max_length` as media embeddings are inserted
inputs, labels = self.__truncate_sequence(inputs, labels)
# Pad sequences to the longest one in the batch
return self.__batchify_sequence(inputs, labels)
def __embed_media_tokens(
self,
media: Dict[str, List[torch.Tensor]],
media_config: Dict[str, Dict[str, Any]],
) -> Dict[str, List[torch.Tensor]]:
embeds = defaultdict(deque)
for name in media:
if self.training:
# Gather metainfo of media objects from all ranks
info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
infos = list(chain(*distributed.all_gather(info)))
# The entire batch does not contain any media objects of this type.
if not infos:
continue
# Create a dummy tensor to ensure the encoder is called, otherwise the training will hang.
if media.get(name) is None or len(media[name]) == 0:
dummy = torch.zeros(infos[0]["shape"], dtype=infos[0]["dtype"], device=self.device)
embeds["dummy"].extend(self.encoders[name]([dummy], media_config[name]))
continue
embeds[name] = deque(self.encoders[name](media[name], media_config[name]))
return embeds
def __truncate_sequence(
self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.training and any(len(input) > self.tokenizer.model_max_length for input in inputs):
warnings.warn(f"Truncating sequences to `model_max_length` ({self.tokenizer.model_max_length}).")
inputs = [input[: self.tokenizer.model_max_length] for input in inputs]
labels = [label[: self.tokenizer.model_max_length] for label in labels]
return inputs, labels
def __batchify_sequence(
self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
batch_size = len(inputs)
device = inputs[0].device
hidden_size = inputs[0].shape[1]
max_length = max(inputs[k].shape[0] for k in range(batch_size))
attention_mask = torch.ones((batch_size, max_length), dtype=torch.bool, device=device)
inputs_p, labels_p = [], []
for k in range(batch_size):
size_pk = max_length - inputs[k].shape[0]
inputs_pk = torch.zeros((size_pk, hidden_size), dtype=inputs[k].dtype, device=device)
labels_pk = torch.full((size_pk,), IGNORE_INDEX, dtype=labels[k].dtype, device=device)
if self.tokenizer.padding_side == "right":
attention_mask[k, inputs[k].shape[0] :] = False
inputs_pk = torch.cat([inputs[k], inputs_pk], dim=0)
labels_pk = torch.cat([labels[k], labels_pk], dim=0)
else:
attention_mask[k, : -inputs[k].shape[0]] = False
inputs_pk = torch.cat([inputs_pk, inputs[k]], dim=0)
labels_pk = torch.cat([labels_pk, labels[k]], dim=0)
inputs_p.append(inputs_pk)
labels_p.append(labels_pk)
inputs = torch.stack(inputs_p, dim=0)
labels = torch.stack(labels_p, dim=0)
return inputs, labels, attention_mask
def repack_multimodal_data(self, inputs_embeds, attention_mask, position_ids, labels):
# Handle sequence parallelism
PROCESS_GROUP_MANAGER = get_pg_manager()
# We do re-sharding instead of packing here to ensure the sequence length is the same across all ranks.
if PROCESS_GROUP_MANAGER is not None:
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
sp_group = PROCESS_GROUP_MANAGER.sp_pg
ring_degree = PROCESS_GROUP_MANAGER.ring_degree
ring_rank = PROCESS_GROUP_MANAGER.ring_rank
ring_type = PROCESS_GROUP_MANAGER.ring_type
ulysses_degree = PROCESS_GROUP_MANAGER.ulysses_degree
ulysses_rank = PROCESS_GROUP_MANAGER.ulysses_rank
bs, shard_seqlen = position_ids.shape
sp_seq_len = [torch.zeros(1, dtype=torch.int64, device=position_ids.device) for _ in range(sp_degree)]
dist.all_gather(sp_seq_len, torch.tensor(shard_seqlen, device=position_ids.device), group=sp_group)
sp_seq_len_cat = torch.cat(sp_seq_len, dim=0)
if sp_rank == 0:
original_start_id = 0
else:
original_start_id = torch.sum(sp_seq_len_cat[:sp_rank]).item()
original_end_id = torch.sum(sp_seq_len_cat[: sp_rank + 1]).item()
# Gather attention_mask, position_ids, labels and input_embeds
all_inputs_embeds = torch.zeros(
bs,
torch.sum(sp_seq_len_cat),
inputs_embeds.shape[-1],
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
).contiguous()
all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
dist.barrier(group=sp_group)
dist.all_reduce(all_inputs_embeds, group=sp_group)
dist.barrier(group=sp_group)
attention_mask_list = [
torch.zeros((bs, sp_seq_len[i]), dtype=attention_mask.dtype, device=attention_mask.device)
for i in range(sp_degree)
]
position_ids_list = [
torch.zeros((bs, sp_seq_len[i]), dtype=position_ids.dtype, device=position_ids.device)
for i in range(sp_degree)
]
labels_list = [
torch.zeros((bs, sp_seq_len[i]), dtype=labels.dtype, device=labels.device) for i in range(sp_degree)
]
dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
dist.all_gather(position_ids_list, position_ids, group=sp_group)
dist.all_gather(labels_list, labels, group=sp_group)
effective_seqlen_list = [attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)]
effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)
global_attention_mask_list = []
global_position_ids_list = []
global_labels_list = []
global_inputs_embeds_list = []
for i in range(bs):
global_attention_mask_batch_list = []
global_position_ids_batch_list = []
global_labels_batch_list = []
global_inputs_embeds_batch_list = []
for j in range(sp_degree):
eff_len = effective_seqlen_batch_list[i][j]
prev_len = torch.sum(sp_seq_len_cat[:j]).item() if j > 0 else 0
global_attention_mask_batch_list.append(attention_mask_list[j][i, :eff_len])
global_position_ids_batch_list.append(position_ids_list[j][i, :eff_len])
global_labels_batch_list.append(labels_list[j][i, :eff_len])
global_inputs_embeds_batch_list.append(all_inputs_embeds[i, prev_len : prev_len + eff_len, :])
global_attention_mask_list.append(torch.cat(global_attention_mask_batch_list, dim=0))
global_position_ids_list.append(torch.cat(global_position_ids_batch_list, dim=0))
global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))
global_attention_mask = torch.nn.utils.rnn.pad_sequence(
global_attention_mask_list, batch_first=True, padding_value=False
)
global_position_ids = torch.nn.utils.rnn.pad_sequence(
global_position_ids_list, batch_first=True, padding_value=-1
)
global_labels = torch.nn.utils.rnn.pad_sequence(
global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
)
global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
global_inputs_embeds_list, batch_first=True, padding_value=0
)
# Re-shard the inputs
if ring_degree > 1:
total_effective_seqlen = torch.sum(effective_seqlen, dim=1)
new_seqlen_per_rank = total_effective_seqlen // sp_degree
assert torch.all(
total_effective_seqlen % sp_degree == 0
), "total_effective_seqlen must be divisible by sp_degree"
max_new_seqlen = torch.max(new_seqlen_per_rank).item()
new_attention_mask = torch.zeros(
(bs, max_new_seqlen), dtype=global_attention_mask.dtype, device=global_attention_mask.device
)
new_position_ids = torch.zeros(
(bs, max_new_seqlen), dtype=global_position_ids.dtype, device=global_position_ids.device
)
new_labels = torch.full(
(bs, max_new_seqlen), IGNORE_INDEX, dtype=global_labels.dtype, device=global_labels.device
)
new_inputs_embeds = torch.zeros(
(bs, max_new_seqlen, global_inputs_embeds.shape[-1]),
dtype=global_inputs_embeds.dtype,
device=global_inputs_embeds.device,
)
if ring_type == "ring_varlen":
for i in range(bs):
start_idx = new_seqlen_per_rank[i] * sp_rank
end_idx = start_idx + new_seqlen_per_rank[i]
new_attention_mask[i, : new_seqlen_per_rank[i]] = global_attention_mask[i, start_idx:end_idx]
new_position_ids[i, : new_seqlen_per_rank[i]] = global_position_ids[i, start_idx:end_idx]
new_labels[i, : new_seqlen_per_rank[i]] = global_labels[i, start_idx:end_idx]
new_inputs_embeds[i, : new_seqlen_per_rank[i], :] = global_inputs_embeds[
i, start_idx:end_idx, :
]
elif ring_type == "zigzag_ring_varlen":
chunk_size = total_effective_seqlen // (2 * sp_degree)
for i in range(bs):
# Zigzag pattern indices
if sp_degree == ring_degree:
forward_rank_idx = sp_rank
backward_rank_idx = 2 * sp_degree - sp_rank - 1
else:
ulysses_offset = ulysses_rank * ring_degree * 2
forward_rank_idx = ring_rank + ulysses_offset
backward_rank_idx = sp_degree - ring_rank - 1 + ulysses_offset
# Calculate start and end indices for the forward and backward zigzag
start_idx_fwd = forward_rank_idx * chunk_size[i]
end_idx_fwd = start_idx_fwd + chunk_size[i]
start_idx_bwd = backward_rank_idx * chunk_size[i]
end_idx_bwd = start_idx_bwd + chunk_size[i]
# Fill new tensors with zigzag data
new_attention_mask[i, : chunk_size[i]] = global_attention_mask[i, start_idx_fwd:end_idx_fwd]
new_attention_mask[i, chunk_size[i] : 2 * chunk_size[i]] = global_attention_mask[
i, start_idx_bwd:end_idx_bwd
]
new_position_ids[i, : chunk_size[i]] = global_position_ids[i, start_idx_fwd:end_idx_fwd]
new_position_ids[i, chunk_size[i] : 2 * chunk_size[i]] = global_position_ids[
i, start_idx_bwd:end_idx_bwd
]
new_labels[i, : chunk_size[i]] = global_labels[i, start_idx_fwd:end_idx_fwd]
new_labels[i, chunk_size[i] : 2 * chunk_size[i]] = global_labels[i, start_idx_bwd:end_idx_bwd]
new_inputs_embeds[i, : chunk_size[i], :] = global_inputs_embeds[i, start_idx_fwd:end_idx_fwd, :]
new_inputs_embeds[i, chunk_size[i] : 2 * chunk_size[i], :] = global_inputs_embeds[
i, start_idx_bwd:end_idx_bwd, :
]
else:
raise ValueError(f"Invalid ring_type: {ring_type}")
else:
global_seq_len = global_attention_mask.shape[-1]
seq_len_sharded = global_seq_len // sp_degree
start_idx_reshard = seq_len_sharded * sp_rank
end_idx_reshard = start_idx_reshard + seq_len_sharded if sp_rank < sp_degree - 1 else global_seq_len
new_attention_mask = torch.narrow(
global_attention_mask, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
)
new_position_ids = torch.narrow(
global_position_ids, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
)
new_labels = torch.narrow(global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
new_inputs_embeds = torch.narrow(
global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
)
return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
device = inputs_embeds.device
batch_size = inputs_embeds.shape[0]
seqlens = [attention_mask[k].sum().item() for k in range(batch_size)]
# Pack all sequences together
inputs_embeds_p = [inputs_embeds[k][attention_mask[k]] for k in range(batch_size)]
attention_mask_p = [torch.ones(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
position_ids_p = [torch.arange(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
labels_p = [labels[k][attention_mask[k]] for k in range(batch_size)]
# Add one dummy token at the end of the packed sequence to ensure that `_get_unpacked_data` will be called
inputs_embeds_p.append(torch.zeros(1, inputs_embeds.shape[-1], dtype=inputs_embeds.dtype, device=device))
attention_mask_p.append(torch.tensor([0], dtype=torch.int, device=device))
position_ids_p.append(torch.tensor([0], dtype=torch.int, device=device))
labels_p.append(torch.tensor([IGNORE_INDEX], dtype=torch.int, device=device))
# Mask the first token of each sequence to avoid contamination
for label in labels_p:
label[0] = IGNORE_INDEX
# Batch the data
inputs_embeds_p = torch.cat(inputs_embeds_p, dim=0).unsqueeze(0)
attention_mask_p = torch.cat(attention_mask_p, dim=0).unsqueeze(0)
position_ids_p = torch.cat(position_ids_p, dim=0).unsqueeze(0)
labels_p = torch.cat(labels_p, dim=0).unsqueeze(0)
if hasattr(
self, "pad_to_multiple_of"
): # related to quantization, please refer to ModelArguments for more information.
assert len(labels_p.shape) == 2
batch_size, max_length, cur_length = labels_p.shape[0], labels_p.shape[1], labels_p.shape[1]
hidden_size = inputs_embeds_p.shape[-1]
if max_length % self.pad_to_multiple_of != 0:
max_length = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of
difference = max_length - cur_length
inputs_embeds_p = torch.cat(
(
inputs_embeds_p,
torch.full((batch_size, difference, hidden_size), self.llm.pad_token_id).to(inputs_embeds_p),
),
dim=1,
)
labels_p = torch.cat((labels_p, torch.full((batch_size, difference), IGNORE_INDEX).to(labels_p)), dim=1)
attention_mask_p = torch.cat(
(
attention_mask_p,
torch.zeros((batch_size, difference), dtype=torch.bool).to(attention_mask_p),
),
dim=1,
)
position_ids_p = torch.cat(
(position_ids_p, torch.full((batch_size, difference), -1).to(position_ids_p)), dim=1
)
return inputs_embeds_p, attention_mask_p, position_ids_p, labels_p
def get_xgr_logits_processor(self, response_format) -> List[LogitsProcessor]:
raise NotImplementedError("This method is not implemented for VILA model.")
# Convert response format to logits processor
import xgrammar as xgr
logging.info("[XGrammar] Compiling grammar for contrained output")
if self.grammar_compiler is None:
# logging.info(f"[XGrammar] {self.tokenizer}, {self.tokenizer.vocab_size}, {self.vocab_size}")
self.grammar_compiler = xgr.GrammarCompiler(
xgr.TokenizerInfo.from_huggingface(self.tokenizer, vocab_size=self.vocab_size)
)
if response_format.type == "json_schema":
compiled_grammar = self.grammar_compiler.compile_json_schema(
response_format.json_schema.schema_,
indent=2,
)
else:
compiled_grammar = self.grammar_compiler.compile_builtin_json_grammar()
return [xgr.contrib.hf.LogitsProcessor(compiled_grammar)]
def forward(
self,
input_ids: torch.LongTensor = None,
media: Optional[Dict[str, List[torch.Tensor]]] = None,
images: Optional[torch.FloatTensor] = None,
media_config: Optional[List] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
packing: bool = True,
force_packing: bool = False,
seqlens_in_batch: Optional[torch.LongTensor] = None,
dpo_forward: bool = False,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
self.freezed_module_patch()
if images is not None:
if media is not None:
raise ValueError("Both 'media' and 'images' are provided. Please provide only one.")
print("The 'images' argument is deprecated. Please use 'media' instead.")
media = {"image": images}
if media_config is None:
media_config = defaultdict(dict)
if inputs_embeds is None:
inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask)
if force_packing or (packing and self.training and not dpo_forward):
if seqlens_in_batch is None:
seqlens_in_batch = torch.sum(attention_mask, dim=1)
set_seqlens_in_batch(seqlens_in_batch)
(inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data(
inputs_embeds, attention_mask, position_ids, labels
)
outputs = self.llm(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
labels=labels,
**kwargs,
)
if self.training and getattr(self.config, "time_token_ids", []):
outputs.loss = soft_cross_entropy(
outputs.logits,
labels,
soft_tokens=self.config.time_token_ids,
std=self.config.soft_ce_std,
)
if dpo_forward:
return outputs.logits, labels
return outputs
@torch.inference_mode()
def generate(
self,
input_ids: Optional[torch.FloatTensor] = None,
media: Optional[Dict[str, List[torch.Tensor]]] = None,
media_config: Dict[str, Dict[str, Any]] = None,
attention_mask: Optional[torch.LongTensor] = None,
**generation_kwargs,
):
inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask)
return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs)
@torch.inference_mode()
def generate_content(
self,
prompt: Union[str, List],
generation_config: Optional[GenerationConfig] = None,
response_format=None,
) -> str:
# TODO(zhijianl): Support directly taking conversation as input
conversation = [{"from": "human", "value": prompt}]
# Convert response format to logits processor
if response_format:
xgr_logits_processor = self.get_xgr_logits_processor(response_format)
else:
xgr_logits_processor = None
# Extract media from the conversation
# TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
media = extract_media(conversation, self.config)
# Process media
media_config = defaultdict(dict)
for name in media:
if name == "image":
if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]:
self.config.image_processor = self.vision_tower.image_processor
if self.config.image_aspect_ratio == "dynamic":
images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half()
conversation[0]["value"] = conversation[0]["value"].replace(
DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0]
)
else:
if type(self.config.s2_scales) is str:
self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
images, block_sizes = process_image(
media["image"][0], self.config, None, enable_dynamic_s2=True
)
images = images.half()
media_config[name]["block_sizes"] = [block_sizes]
else:
images = process_images(media["image"], self.vision_tower.image_processor, self.config).half()
media[name] = [image for image in images]
elif name == "video":
if self.config.image_aspect_ratio == "dynamic" and self.config.video_max_tiles > 1:
media[name] = [
process_images(
images,
self.vision_tower.image_processor,
self.config,
enable_dynamic_res=True,
max_tiles=self.config.video_max_tiles,
).half()
for images in media[name]
]
elif self.config.image_aspect_ratio == "dynamic_s2" and self.config.video_max_tiles > 1:
self.config.image_processor = self.vision_tower.image_processor
if type(self.config.s2_scales) is str:
self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
media[name] = [
torch.cat(
[
process_image(
image,
self.config,
None,
enable_dynamic_s2=True,
max_tiles=self.config.video_max_tiles,
)[0].half()
for image in images
]
)
for images in media[name]
]
else:
media[name] = [
process_images(images, self.vision_tower.image_processor, self.config).half()
for images in media[name]
]
else:
raise ValueError(f"Unsupported media type: {name}")
# Tokenize the conversation
input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)
# Set up the generation config
generation_config = generation_config or self.default_generation_config
# Generate the response
try:
output_ids = self.generate(
input_ids=input_ids,
media=media,
media_config=media_config,
generation_config=generation_config,
logits_processor=xgr_logits_processor, # structured generation
)
except ValueError:
if not generation_config.do_sample:
raise
# FIXME(zhijianl): This is a temporary workaround for the sampling issue
logging.warning("Generation failed with sampling, retrying with greedy decoding.")
generation_config.do_sample = False
output_ids = self.generate(
input_ids=input_ids,
media=media,
media_config=media_config,
generation_config=generation_config,
logits_processor=xgr_logits_processor,
)
# Decode the response
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
return response
@property
def default_generation_config(self) -> GenerationConfig:
generation_config = copy.deepcopy(self.generation_config or GenerationConfig())
if self.tokenizer.eos_token_id is None:
raise ValueError("Tokenizer must have an EOS token")
if generation_config.max_length == GenerationConfig().max_length:
generation_config.max_length = self.tokenizer.model_max_length
if generation_config.pad_token_id is None:
generation_config.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
if generation_config.bos_token_id is None:
generation_config.bos_token_id = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
if generation_config.eos_token_id is None:
generation_config.eos_token_id = self.tokenizer.eos_token_id
return generation_config
|