File size: 52,411 Bytes
c5f696d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
import copy
import json
import logging
import math
import os
import os.path
import os.path as osp
import shutil
import warnings
from abc import ABC
from collections import OrderedDict, defaultdict, deque
from copy import deepcopy
from itertools import chain
from threading import Thread
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from einops import rearrange
from PIL import Image
from transformers import (
    AutoConfig,
    AutoModel,
    AutoProcessor,
    AutoTokenizer,
    GenerationConfig,
    LogitsProcessor,
    PretrainedConfig,
    PreTrainedModel,
    Qwen2Config,
    Qwen2ForCausalLM,
    Qwen2PreTrainedModel,
    TextIteratorStreamer,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import ContextManagers, no_init_weights

from .base_projector import MultimodalProjector, MultimodalProjectorConfig
from .builder import build_llm_and_tokenizer
from .configuration_vila import VILAConfig
from .constants import *
from .conversation import SeparatorStyle, default_conversation
from .media import extract_media
from .media_encoder import BasicImageEncoder, BasicVideoEncoder
from .mm_utils import process_image, process_images
from .siglip_encoder import SiglipVisionTower, SiglipVisionTowerDynamicS2, SiglipVisionTowerS2
from .tokenizer_utils import tokenize_conversation
from .utils import get_model_config


# from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, NUM_EXTRA_TOKENS
# quick hack for remote code
def get_pg_manager():
    return None


def get_model_weights_dtype(model: nn.Module):
    pass


def build_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
    if model_type_or_path is None:
        return None
    ## load from pretrained model
    if config.resume_path:
        assert os.path.exists(model_type_or_path), f"Resume mm projector path {model_type_or_path} does not exist!"
        return MultimodalProjector.from_pretrained(model_type_or_path, config)
    ## build from scratch
    else:
        mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
        mm_projector = MultimodalProjector(mm_projector_cfg, config)
        return mm_projector


def check_dot_in_model_path(model_path: str):
    """Check if the model path contains dot, which will affect the remote code loading."""
    if osp.isdir(model_path):  # local model
        if "." in osp.abspath(model_path):
            return True
    else:  # remote model
        if "." in model_path:
            return True
    return False


def get_vila_version(model_path: str) -> str:
    VERSIONS = ["vila1.5", "vila-u", "longvila", "nvila", "vila-m3"]
    for version in VERSIONS:
        if version in model_path.lower():
            return version
    return None


def generate_jinja_template(conv_mode: str) -> str:
    if conv_mode == "vicuna_v1":
        return """{% set system_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." %}
{% set roles = ["USER", "ASSISTANT"] %}
{% set sep = " " %}
{% set sep2 = "</s>" %}

{{ system_prompt }}

{% for message in messages %}
    {% if message['role'] == roles[0] %}
        {{ roles[0] }}{{ sep }}{{ message['content'] }}{{ sep2 }}
    {% else %}
        {{ roles[1] }}{{ sep }}{{ message['content'] }}{{ sep2 }}
    {% endif %}
{% endfor %}"""
    elif conv_mode == "llama_3":
        return """{% set system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." %}
{% set roles = ["<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"] %}
{% set sep = "<|eot_id|>" %}
{% set sep2 = "<|end_of_text|>" %}

{{ system_prompt }}

{% for message in messages %}
    {% if message['role'] == 'user' %}
        {{ roles[0] }}{{ message['content'] }}{{ sep }}
    {% else %}
        {{ roles[1] }}{{ message['content'] }}{{ sep }}
    {% endif %}
{% endfor %}

{{ sep2 }}"""
    elif conv_mode == "hermes_2":
        return """{% set system_prompt = "<|im_start|>system\nAnswer the questions." %}
{% set roles = ["<|im_start|>user\n", "<|im_start|>assistant\n"] %}
{% set sep = "<|im_end|>" %}

{{ system_prompt }}{{ sep }}

{% for message in messages %}
    {% if message['role'] == 'user' %}
        {{ roles[0] }}{{ message['content'] }}{{ sep }}
    {% else %}
        {{ roles[1] }}{{ message['content'] }}{{ sep }}
    {% endif %}
{% endfor %}"""
    else:
        raise NotImplementedError(f"Jinja template generation is not implemented for {conv_mode}.")


def build_vision_tower(model_name_or_path: str, config: PretrainedConfig) -> PreTrainedModel:
    ## skip vision tower instantiation
    if model_name_or_path is None:
        return None

    vision_tower_arch = None
    if config.resume_path and "radio" not in model_name_or_path:
        assert os.path.exists(model_name_or_path), f"Resume vision tower path {model_name_or_path} does not exist!"
        vision_tower_cfg = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
        vision_tower_arch = vision_tower_cfg.architectures[0].lower()
    vision_tower_name = vision_tower_arch if vision_tower_arch is not None else model_name_or_path

    use_s2 = getattr(config, "s2", False)
    use_dynamic_s2 = getattr(config, "dynamic_s2", False)

    if "siglip" in vision_tower_name:
        if use_dynamic_s2:
            vision_tower = SiglipVisionTowerDynamicS2(model_name_or_path, config)
        elif use_s2:
            vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
        else:
            vision_tower = SiglipVisionTower(model_name_or_path, config)
    else:
        raise NotImplementedError(f"Unknown vision tower: {model_name_or_path}")

    config.mm_hidden_size = (
        vision_tower.config.hidden_size if not (use_s2 or use_dynamic_s2) else vision_tower.hidden_size
    )
    return vision_tower


class VILAPretrainedModel(PreTrainedModel):
    config_class = VILAConfig
    main_input_name = "input_embeds"
    supports_gradient_checkpointing = True
    _supports_flash_attn_2 = True

    def __init__(self, config: VILAConfig, *args, **kwargs):
        super().__init__(config)
        self.config = config
        cfgs = get_model_config(config)
        if len(cfgs) == 3:
            llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
        else:
            raise ValueError("`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config.")

        # loading on cpu by default
        device_map = kwargs.get("device_map", "cpu")
        self.mm_projector = build_mm_projector(mm_projector_cfg, config)
        self.vision_tower = build_vision_tower(vision_tower_cfg, config)
        if "auto" in device_map or "cuda" in device_map:
            self.mm_projector = self.mm_projector.cuda()
            self.vision_tower = self.vision_tower.cuda()
        # set device_map auto can autoamtically shard llm to different devices
        self.llm, self.tokenizer = self.init_llm(llm_cfg, config, device_map=device_map)

        self.encoders = {"image": BasicImageEncoder(self), "video": BasicVideoEncoder(self)}

        self.post_config()
        self.is_loaded = True

        assert (
            self.llm is not None or self.vision_tower is not None or self.mm_projector is not None
        ), "At least one of the components must be instantiated."

    @classmethod
    def convert_vila_dev_ckpt_to_remote(
        self,
        model_path: str,
        output_dir: str = None,
        vila_version: str | None = None,
        conv_mode: str | None = None,
        *model_args,
        **kwargs,
    ):
        # assert type(self) == VILAForCasualLM, "This method is only available for VILAForCasualLM."
        from huggingface_hub import HfApi, snapshot_download

        if os.path.isdir(model_path):
            model_path = model_path
        api = HfApi()

        if check_dot_in_model_path(model_path) and output_dir is None:
            raise ValueError(
                f"Model path {model_path} contains a dot, which will affect the remote code loading. Please specify the output directory without dot in the path to fix this issue."
            )
        if output_dir is not None and "." in output_dir:
            raise ValueError(
                f"Output directory {output_dir} contains a dot, which will affect the remote code loading. Please specify a valid output directory without dots."
            )
        if vila_version is None:
            vila_version = get_vila_version(model_path)

        if api.repo_exists(model_path):
            model_path = snapshot_download(model_path, local_dir=output_dir)
            print("downloading HF model to", model_path)

        cfg_path = os.path.join(model_path, "config.json")
        config = json.load(open(cfg_path))
        config["version"] = "2.0"  # nvila tag
        config["architectures"] = ["VILAForCasualLM"]
        config["auto_map"] = {
            "AutoConfig": "modeling_vila.VILAConfig",
            "AutoModel": "modeling_vila.VILAForCasualLM",
            "AutoModelForCausalLM": "modeling_vila.VILAForCasualLM",
        }
        config["model_type"] = "vila"
        if vila_version in ["vila1.5", "vila-m3"]:
            if conv_mode is None:
                raise ValueError(f"Please specify the conversation mode for {model_path}.")
            config["chat_template"] = conv_mode
            jinja_template = generate_jinja_template(conv_mode)
            jinja_path = os.path.join(model_path, f"{conv_mode}.jinja")
            with open(jinja_path, "w") as f:
                f.write(jinja_template)
        json.dump(config, open(cfg_path, "w"), indent=2)
        self.copy_remote_py_files(model_path)

    @classmethod
    def copy_remote_py_files(cls, output_dir):
        ## copy .py and REAMDE for next loading remote code
        current_file_path = os.path.abspath(__file__)
        current_folder = os.path.dirname(current_file_path)
        for file_name in os.listdir(current_folder):
            if file_name.endswith(".py") or file_name.endswith(".jinja"):
                full_file_name = os.path.join(current_folder, file_name)
                if os.path.isfile(full_file_name):
                    shutil.copy(full_file_name, output_dir)
                    print("[HF remote code] copying", full_file_name, "to", output_dir)

    def save_pretrained(self, output_dir, state_dict=None):
        if state_dict is None:
            # other wise fetch from deepspeed
            # state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
            state_dict = self.state_dict()

        if getattr(self, "tokenizer", None):
            self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))

        if self.get_llm():
            print(f"saving llm to {osp.join(output_dir, 'llm')}")
            self.llm.config._name_or_path = osp.join(output_dir, "llm")
            llm_state_dict = OrderedDict({k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k})
            self.llm.save_pretrained(os.path.join(output_dir, "llm"), state_dict=llm_state_dict)
            self.config.llm_cfg = self.llm.config

        if self.get_vision_tower():
            print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
            self.vision_tower.config._name_or_path = osp.join(output_dir, "vision_tower")
            vision_tower_state_dict = OrderedDict(
                {k.split("vision_tower.vision_tower.")[-1]: v for k, v in state_dict.items() if "vision_tower" in k}
            )
            self.vision_tower.vision_tower.save_pretrained(
                os.path.join(output_dir, "vision_tower"),
                state_dict=vision_tower_state_dict,
            )
            self.vision_tower.image_processor.save_pretrained(os.path.join(output_dir, "vision_tower"))
            self.config.vision_tower_cfg = self.vision_tower.config
            if hasattr(self.config.vision_tower_cfg, "auto_map"):
                if "radio" not in self.get_vision_tower().__class__.__name__.lower():
                    delattr(self.config.vision_tower_cfg, "auto_map")

        if self.get_mm_projector():
            print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
            self.mm_projector.config._name_or_path = osp.join(output_dir, "mm_projector")
            mm_projector_state_dict = OrderedDict(
                {k.split("mm_projector.")[-1]: v for k, v in state_dict.items() if "mm_projector" in k}
            )
            self.mm_projector.save_pretrained(
                os.path.join(output_dir, "mm_projector"),
                state_dict=mm_projector_state_dict,
            )
            self.config.mm_projector_cfg = self.mm_projector.config

        ## update and save top-level config
        self.config._name_or_path = output_dir
        self.config.architectures = [self.__class__.__name__]
        self.config.save_pretrained(output_dir)

        ## copy .py and REAMDE for next loading remote code
        self.copy_remote_py_files(output_dir)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[str] = None,
        *model_args,
        config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        ignore_mismatched_sizes: bool = False,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        use_safetensors: Optional[bool] = None,
        weights_only: bool = True,
        **kwargs,
    ):
        config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
        return cls._from_config(config, **kwargs)

    def init_llm(self, llm_config, config, *args, **kwargs):
        self.llm, self.tokenizer = build_llm_and_tokenizer(llm_config, config, *args, **kwargs)
        # hard coded for NVILA
        # variables for XGrammar
        # print("DEBUG", len(self.tokenizer.added_tokens_encoder.keys()), self.tokenizer.added_tokens_encoder.keys())
        NUM_EXTRA_TOKENS = len(self.tokenizer.added_tokens_encoder.keys())

        # TODO: SENTINEL_TOKEN is not added, need to check with Zhijian
        self.vocab_size = self.tokenizer.vocab_size + NUM_EXTRA_TOKENS
        # XGrammar tokenizer and grammar compiler
        # lazy init only when specified json output during inference
        self.grammar_compiler = None

        self.llm.resize_token_embeddings(len(self.tokenizer))
        return self.llm, self.tokenizer

    def post_config(self):
        ######################################################################
        # TODO: need to check dtype with jason
        self.llm = self.llm.to(torch.float16)
        self.mm_projector = self.mm_projector.to(torch.float16)
        self.vision_tower = self.vision_tower.to(torch.float16)
        ######################################################################
        self.training = self.llm.training
        ## configuration
        if getattr(self.config, "llm_cfg", None) is None:
            self.config.llm_cfg = self.llm.config
        if getattr(self.config, "vision_tower_cfg", None) is None:
            self.config.vision_tower_cfg = self.vision_tower.config
        if getattr(self.config, "mm_projector_cfg", None) is None:
            self.config.mm_projector_cfg = self.mm_projector.config

    def get_llm(self):
        llm = getattr(self, "llm", None)
        if type(llm) is list:
            llm = llm[0]
        return llm

    def get_lm_head(self):
        lm_head = getattr(self.get_llm(), "lm_head", None)
        return lm_head

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def get_mm_projector(self):
        mm_projector = getattr(self, "mm_projector", None)
        if type(mm_projector) is list:
            mm_projector = mm_projector[0]
        return mm_projector

    def freezed_module_patch(self):
        """
        Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
        """
        if self.training:
            if self.get_llm() and not getattr(self.config, "tune_language_model", False):
                pass
                # logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
            if self.get_vision_tower() and not getattr(self.config, "tune_vision_tower", False):
                self.get_vision_tower().eval()
            if self.get_mm_projector() and not getattr(self.config, "tune_mm_projector", False):
                self.get_mm_projector().eval()


class VILAForCasualLM(VILAPretrainedModel):
    def __init__(self, config: VILAConfig, *args, **kwargs):
        super().__init__(config, *args, **kwargs)

    def merge_features_for_dynamic_s2(self, image_features, block_sizes):
        scales = self.get_vision_tower().scales
        resize_output_to_scale_idx = self.get_vision_tower().resize_output_to_scale_idx

        image_features_each_image = []
        new_block_sizes = []
        block_cnt = 0
        for block_size_each_image in block_sizes:
            if block_size_each_image is None:
                cur_features = image_features[block_cnt : block_cnt + 1]
                cur_features = rearrange(cur_features, "1 (h w) c -> 1 c h w", h=int(cur_features.shape[1] ** 0.5))
                cur_features = cur_features.repeat(1, len(scales), 1, 1)
                image_features_each_image.append(cur_features)
                new_block_sizes.append((1, 1))
                block_cnt += 1
            else:
                cur_features_each_scale = []
                for scale in scales[:-1]:
                    num_blocks_this_scale = (scale // scales[0]) ** 2
                    cur_features_each_scale.append(
                        self.merge_chessboard(
                            image_features[block_cnt : block_cnt + num_blocks_this_scale],
                            num_split_h=scale // scales[0],
                            num_split_w=scale // scales[0],
                        )
                    )  # 1 * C * H * W
                    block_cnt += num_blocks_this_scale
                num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1]
                cur_features_each_scale.append(
                    self.merge_chessboard(
                        image_features[block_cnt : block_cnt + num_blocks_last_scale],
                        num_split_h=block_size_each_image[0],
                        num_split_w=block_size_each_image[1],
                    )
                )  # 1 * C * H * W
                block_cnt += num_blocks_last_scale

                # resize and concat features from different scales
                output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:]
                cur_features = torch.cat(
                    [
                        F.interpolate(cur_features_each_scale[i].to(torch.float32), size=output_size, mode="area").to(
                            cur_features_each_scale[i].dtype
                        )
                        for i in range(len(cur_features_each_scale))
                    ],
                    dim=1,
                )
                # cur_features = rearrange(cur_features, "1 c h w -> (h w) c")

                image_features_each_image.append(cur_features)

                if resize_output_to_scale_idx == len(scales) - 1 or resize_output_to_scale_idx == -1:
                    new_block_sizes.append(block_size_each_image)
                else:
                    new_block_sizes.append(
                        (
                            scales[resize_output_to_scale_idx] // scales[0],
                            scales[resize_output_to_scale_idx] // scales[0],
                        )
                    )

        assert block_cnt == len(image_features)

        return image_features_each_image, new_block_sizes

    def encode_images(self, images, block_sizes: Optional[Optional[Tuple[int, ...]]] = None):
        if block_sizes is None:
            block_sizes = [None] * len(images)
        if getattr(self.config, "dynamic_s2", False):
            image_features = self.get_vision_tower()(images)
            image_features, new_block_sizes = self.merge_features_for_dynamic_s2(image_features, block_sizes)

            image_features = [
                self.split_chessboard(x, block_size[0], block_size[1])
                for x, block_size in zip(image_features, new_block_sizes)
            ]  # list of B * C * H * W tensors
            image_features = torch.cat(
                [rearrange(x, "b c h w -> b (h w) c") for x in image_features], dim=0
            )  # B * N * C
            image_features = self.get_mm_projector()(image_features)
            image_features = list(
                image_features.split([block_size[0] * block_size[1] for block_size in new_block_sizes], dim=0)
            )
            image_features = [
                self.merge_chessboard(x, block_size[0], block_size[1])
                for x, block_size in zip(image_features, new_block_sizes)
            ]  # list of 1 * C * H * W tensors
            image_features = [rearrange(x, "1 c h w -> (h w) c") for x in image_features]  # list of N * C tensors
            if all([feature.shape[0] == image_features[0].shape[0] for feature in image_features]):
                image_features = torch.stack(image_features, dim=0)
        else:
            image_features = self.get_vision_tower()(images)
            image_features = self.get_mm_projector()(image_features)
        return image_features

    def _embed(
        self,
        input_ids: torch.Tensor,
        media: Dict[str, List[torch.Tensor]],
        media_config: Dict[str, Dict[str, Any]],
        labels: Optional[torch.Tensor],
        attention_mask: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        labels = labels if labels is not None else torch.full_like(input_ids, IGNORE_INDEX)
        attention_mask = attention_mask if attention_mask is not None else torch.ones_like(input_ids, dtype=torch.bool)

        # PROCESS_GROUP_MANAGER = get_pg_manager()
        PROCESS_GROUP_MANAGER = None
        if PROCESS_GROUP_MANAGER is not None:
            for name in media:
                self.encoders[name].end_tokens = None

        # Extract text and media embeddings
        text_embeds = self.llm.model.embed_tokens(input_ids)
        media_embeds = self.__embed_media_tokens(media, media_config)

        # This is a workaround to make sure the dummy embeddings are consumed
        while media_embeds.get("dummy"):
            dummy_embed = media_embeds["dummy"].popleft()
            text_embeds += torch.sum(dummy_embed) * 0

        # Remove padding
        batch_size = labels.shape[0]
        text_embeds = [text_embeds[k][attention_mask[k]] for k in range(batch_size)]
        labels = [labels[k][attention_mask[k]] for k in range(batch_size)]

        # Build inverse mapping from token ID to media name
        media_tokens = {}
        for name, token_id in self.tokenizer.media_token_ids.items():
            media_tokens[token_id] = name

        # Fuse text and media embeddings
        inputs_m, labels_m = [], []
        for k in range(batch_size):
            inputs_mk, labels_mk = [], []
            pos = 0
            while pos < len(labels[k]):
                if input_ids[k][pos].item() in media_tokens:
                    end = pos + 1
                    name = media_tokens[input_ids[k][pos].item()]
                    input = media_embeds[name].popleft()
                    label = torch.full([input.shape[0]], IGNORE_INDEX, device=labels[k].device, dtype=labels[k].dtype)
                else:
                    end = pos
                    while end < len(labels[k]) and input_ids[k][end].item() not in media_tokens:
                        end += 1
                    input = text_embeds[k][pos:end]
                    label = labels[k][pos:end]
                inputs_mk.append(input)
                labels_mk.append(label)
                pos = end
            inputs_m.append(torch.cat(inputs_mk, dim=0))
            labels_m.append(torch.cat(labels_mk, dim=0))
        inputs, labels = inputs_m, labels_m

        # Check if all media embeddings are consumed
        for name in media_embeds:
            if media_embeds[name]:
                raise ValueError(f"Not all {name} embeddings are consumed!")

        # Truncate sequences to `model_max_length` as media embeddings are inserted
        inputs, labels = self.__truncate_sequence(inputs, labels)

        # Pad sequences to the longest one in the batch
        return self.__batchify_sequence(inputs, labels)

    def __embed_media_tokens(
        self,
        media: Dict[str, List[torch.Tensor]],
        media_config: Dict[str, Dict[str, Any]],
    ) -> Dict[str, List[torch.Tensor]]:
        embeds = defaultdict(deque)
        for name in media:
            if self.training:
                # Gather metainfo of media objects from all ranks
                info = [{"shape": tensor.shape, "dtype": tensor.dtype} for tensor in media.get(name, [])]
                infos = list(chain(*distributed.all_gather(info)))

                # The entire batch does not contain any media objects of this type.
                if not infos:
                    continue

                # Create a dummy tensor to ensure the encoder is called, otherwise the training will hang.
                if media.get(name) is None or len(media[name]) == 0:
                    dummy = torch.zeros(infos[0]["shape"], dtype=infos[0]["dtype"], device=self.device)
                    embeds["dummy"].extend(self.encoders[name]([dummy], media_config[name]))
                    continue
            embeds[name] = deque(self.encoders[name](media[name], media_config[name]))
        return embeds

    def __truncate_sequence(
        self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.training and any(len(input) > self.tokenizer.model_max_length for input in inputs):
            warnings.warn(f"Truncating sequences to `model_max_length` ({self.tokenizer.model_max_length}).")
            inputs = [input[: self.tokenizer.model_max_length] for input in inputs]
            labels = [label[: self.tokenizer.model_max_length] for label in labels]
        return inputs, labels

    def __batchify_sequence(
        self, inputs: List[torch.Tensor], labels: List[torch.Tensor]
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        batch_size = len(inputs)
        device = inputs[0].device
        hidden_size = inputs[0].shape[1]
        max_length = max(inputs[k].shape[0] for k in range(batch_size))
        attention_mask = torch.ones((batch_size, max_length), dtype=torch.bool, device=device)

        inputs_p, labels_p = [], []
        for k in range(batch_size):
            size_pk = max_length - inputs[k].shape[0]
            inputs_pk = torch.zeros((size_pk, hidden_size), dtype=inputs[k].dtype, device=device)
            labels_pk = torch.full((size_pk,), IGNORE_INDEX, dtype=labels[k].dtype, device=device)
            if self.tokenizer.padding_side == "right":
                attention_mask[k, inputs[k].shape[0] :] = False
                inputs_pk = torch.cat([inputs[k], inputs_pk], dim=0)
                labels_pk = torch.cat([labels[k], labels_pk], dim=0)
            else:
                attention_mask[k, : -inputs[k].shape[0]] = False
                inputs_pk = torch.cat([inputs_pk, inputs[k]], dim=0)
                labels_pk = torch.cat([labels_pk, labels[k]], dim=0)
            inputs_p.append(inputs_pk)
            labels_p.append(labels_pk)

        inputs = torch.stack(inputs_p, dim=0)
        labels = torch.stack(labels_p, dim=0)
        return inputs, labels, attention_mask

    def repack_multimodal_data(self, inputs_embeds, attention_mask, position_ids, labels):
        # Handle sequence parallelism
        PROCESS_GROUP_MANAGER = get_pg_manager()

        # We do re-sharding instead of packing here to ensure the sequence length is the same across all ranks.
        if PROCESS_GROUP_MANAGER is not None:
            sp_degree = PROCESS_GROUP_MANAGER.sp_degree
            sp_rank = PROCESS_GROUP_MANAGER.sp_rank
            sp_group = PROCESS_GROUP_MANAGER.sp_pg
            ring_degree = PROCESS_GROUP_MANAGER.ring_degree
            ring_rank = PROCESS_GROUP_MANAGER.ring_rank
            ring_type = PROCESS_GROUP_MANAGER.ring_type
            ulysses_degree = PROCESS_GROUP_MANAGER.ulysses_degree
            ulysses_rank = PROCESS_GROUP_MANAGER.ulysses_rank

            bs, shard_seqlen = position_ids.shape
            sp_seq_len = [torch.zeros(1, dtype=torch.int64, device=position_ids.device) for _ in range(sp_degree)]
            dist.all_gather(sp_seq_len, torch.tensor(shard_seqlen, device=position_ids.device), group=sp_group)
            sp_seq_len_cat = torch.cat(sp_seq_len, dim=0)

            if sp_rank == 0:
                original_start_id = 0
            else:
                original_start_id = torch.sum(sp_seq_len_cat[:sp_rank]).item()
            original_end_id = torch.sum(sp_seq_len_cat[: sp_rank + 1]).item()

            # Gather attention_mask, position_ids, labels and input_embeds
            all_inputs_embeds = torch.zeros(
                bs,
                torch.sum(sp_seq_len_cat),
                inputs_embeds.shape[-1],
                dtype=inputs_embeds.dtype,
                device=inputs_embeds.device,
            ).contiguous()
            all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
            dist.barrier(group=sp_group)
            dist.all_reduce(all_inputs_embeds, group=sp_group)
            dist.barrier(group=sp_group)

            attention_mask_list = [
                torch.zeros((bs, sp_seq_len[i]), dtype=attention_mask.dtype, device=attention_mask.device)
                for i in range(sp_degree)
            ]
            position_ids_list = [
                torch.zeros((bs, sp_seq_len[i]), dtype=position_ids.dtype, device=position_ids.device)
                for i in range(sp_degree)
            ]
            labels_list = [
                torch.zeros((bs, sp_seq_len[i]), dtype=labels.dtype, device=labels.device) for i in range(sp_degree)
            ]

            dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
            dist.all_gather(position_ids_list, position_ids, group=sp_group)
            dist.all_gather(labels_list, labels, group=sp_group)

            effective_seqlen_list = [attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)]
            effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
            effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)

            global_attention_mask_list = []
            global_position_ids_list = []
            global_labels_list = []
            global_inputs_embeds_list = []
            for i in range(bs):
                global_attention_mask_batch_list = []
                global_position_ids_batch_list = []
                global_labels_batch_list = []
                global_inputs_embeds_batch_list = []
                for j in range(sp_degree):
                    eff_len = effective_seqlen_batch_list[i][j]
                    prev_len = torch.sum(sp_seq_len_cat[:j]).item() if j > 0 else 0

                    global_attention_mask_batch_list.append(attention_mask_list[j][i, :eff_len])
                    global_position_ids_batch_list.append(position_ids_list[j][i, :eff_len])
                    global_labels_batch_list.append(labels_list[j][i, :eff_len])
                    global_inputs_embeds_batch_list.append(all_inputs_embeds[i, prev_len : prev_len + eff_len, :])
                global_attention_mask_list.append(torch.cat(global_attention_mask_batch_list, dim=0))
                global_position_ids_list.append(torch.cat(global_position_ids_batch_list, dim=0))
                global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
                global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))

                global_attention_mask = torch.nn.utils.rnn.pad_sequence(
                    global_attention_mask_list, batch_first=True, padding_value=False
                )
                global_position_ids = torch.nn.utils.rnn.pad_sequence(
                    global_position_ids_list, batch_first=True, padding_value=-1
                )
                global_labels = torch.nn.utils.rnn.pad_sequence(
                    global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
                )
                global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
                    global_inputs_embeds_list, batch_first=True, padding_value=0
                )

            # Re-shard the inputs
            if ring_degree > 1:
                total_effective_seqlen = torch.sum(effective_seqlen, dim=1)
                new_seqlen_per_rank = total_effective_seqlen // sp_degree
                assert torch.all(
                    total_effective_seqlen % sp_degree == 0
                ), "total_effective_seqlen must be divisible by sp_degree"

                max_new_seqlen = torch.max(new_seqlen_per_rank).item()

                new_attention_mask = torch.zeros(
                    (bs, max_new_seqlen), dtype=global_attention_mask.dtype, device=global_attention_mask.device
                )
                new_position_ids = torch.zeros(
                    (bs, max_new_seqlen), dtype=global_position_ids.dtype, device=global_position_ids.device
                )
                new_labels = torch.full(
                    (bs, max_new_seqlen), IGNORE_INDEX, dtype=global_labels.dtype, device=global_labels.device
                )
                new_inputs_embeds = torch.zeros(
                    (bs, max_new_seqlen, global_inputs_embeds.shape[-1]),
                    dtype=global_inputs_embeds.dtype,
                    device=global_inputs_embeds.device,
                )

                if ring_type == "ring_varlen":
                    for i in range(bs):
                        start_idx = new_seqlen_per_rank[i] * sp_rank
                        end_idx = start_idx + new_seqlen_per_rank[i]
                        new_attention_mask[i, : new_seqlen_per_rank[i]] = global_attention_mask[i, start_idx:end_idx]
                        new_position_ids[i, : new_seqlen_per_rank[i]] = global_position_ids[i, start_idx:end_idx]
                        new_labels[i, : new_seqlen_per_rank[i]] = global_labels[i, start_idx:end_idx]
                        new_inputs_embeds[i, : new_seqlen_per_rank[i], :] = global_inputs_embeds[
                            i, start_idx:end_idx, :
                        ]
                elif ring_type == "zigzag_ring_varlen":
                    chunk_size = total_effective_seqlen // (2 * sp_degree)
                    for i in range(bs):
                        # Zigzag pattern indices
                        if sp_degree == ring_degree:
                            forward_rank_idx = sp_rank
                            backward_rank_idx = 2 * sp_degree - sp_rank - 1
                        else:
                            ulysses_offset = ulysses_rank * ring_degree * 2
                            forward_rank_idx = ring_rank + ulysses_offset
                            backward_rank_idx = sp_degree - ring_rank - 1 + ulysses_offset

                        # Calculate start and end indices for the forward and backward zigzag
                        start_idx_fwd = forward_rank_idx * chunk_size[i]
                        end_idx_fwd = start_idx_fwd + chunk_size[i]

                        start_idx_bwd = backward_rank_idx * chunk_size[i]
                        end_idx_bwd = start_idx_bwd + chunk_size[i]

                        # Fill new tensors with zigzag data
                        new_attention_mask[i, : chunk_size[i]] = global_attention_mask[i, start_idx_fwd:end_idx_fwd]
                        new_attention_mask[i, chunk_size[i] : 2 * chunk_size[i]] = global_attention_mask[
                            i, start_idx_bwd:end_idx_bwd
                        ]

                        new_position_ids[i, : chunk_size[i]] = global_position_ids[i, start_idx_fwd:end_idx_fwd]
                        new_position_ids[i, chunk_size[i] : 2 * chunk_size[i]] = global_position_ids[
                            i, start_idx_bwd:end_idx_bwd
                        ]

                        new_labels[i, : chunk_size[i]] = global_labels[i, start_idx_fwd:end_idx_fwd]
                        new_labels[i, chunk_size[i] : 2 * chunk_size[i]] = global_labels[i, start_idx_bwd:end_idx_bwd]

                        new_inputs_embeds[i, : chunk_size[i], :] = global_inputs_embeds[i, start_idx_fwd:end_idx_fwd, :]
                        new_inputs_embeds[i, chunk_size[i] : 2 * chunk_size[i], :] = global_inputs_embeds[
                            i, start_idx_bwd:end_idx_bwd, :
                        ]
                else:
                    raise ValueError(f"Invalid ring_type: {ring_type}")
            else:
                global_seq_len = global_attention_mask.shape[-1]
                seq_len_sharded = global_seq_len // sp_degree
                start_idx_reshard = seq_len_sharded * sp_rank
                end_idx_reshard = start_idx_reshard + seq_len_sharded if sp_rank < sp_degree - 1 else global_seq_len

                new_attention_mask = torch.narrow(
                    global_attention_mask, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
                )
                new_position_ids = torch.narrow(
                    global_position_ids, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
                )
                new_labels = torch.narrow(global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
                new_inputs_embeds = torch.narrow(
                    global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
                )

            return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels

        device = inputs_embeds.device
        batch_size = inputs_embeds.shape[0]
        seqlens = [attention_mask[k].sum().item() for k in range(batch_size)]

        # Pack all sequences together
        inputs_embeds_p = [inputs_embeds[k][attention_mask[k]] for k in range(batch_size)]
        attention_mask_p = [torch.ones(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
        position_ids_p = [torch.arange(seqlens[k], dtype=torch.int, device=device) for k in range(batch_size)]
        labels_p = [labels[k][attention_mask[k]] for k in range(batch_size)]

        # Add one dummy token at the end of the packed sequence to ensure that `_get_unpacked_data` will be called
        inputs_embeds_p.append(torch.zeros(1, inputs_embeds.shape[-1], dtype=inputs_embeds.dtype, device=device))
        attention_mask_p.append(torch.tensor([0], dtype=torch.int, device=device))
        position_ids_p.append(torch.tensor([0], dtype=torch.int, device=device))
        labels_p.append(torch.tensor([IGNORE_INDEX], dtype=torch.int, device=device))

        # Mask the first token of each sequence to avoid contamination
        for label in labels_p:
            label[0] = IGNORE_INDEX

        # Batch the data
        inputs_embeds_p = torch.cat(inputs_embeds_p, dim=0).unsqueeze(0)
        attention_mask_p = torch.cat(attention_mask_p, dim=0).unsqueeze(0)
        position_ids_p = torch.cat(position_ids_p, dim=0).unsqueeze(0)
        labels_p = torch.cat(labels_p, dim=0).unsqueeze(0)

        if hasattr(
            self, "pad_to_multiple_of"
        ):  # related to quantization, please refer to ModelArguments for more information.
            assert len(labels_p.shape) == 2
            batch_size, max_length, cur_length = labels_p.shape[0], labels_p.shape[1], labels_p.shape[1]
            hidden_size = inputs_embeds_p.shape[-1]

            if max_length % self.pad_to_multiple_of != 0:
                max_length = ((max_length // self.pad_to_multiple_of) + 1) * self.pad_to_multiple_of
                difference = max_length - cur_length

                inputs_embeds_p = torch.cat(
                    (
                        inputs_embeds_p,
                        torch.full((batch_size, difference, hidden_size), self.llm.pad_token_id).to(inputs_embeds_p),
                    ),
                    dim=1,
                )
                labels_p = torch.cat((labels_p, torch.full((batch_size, difference), IGNORE_INDEX).to(labels_p)), dim=1)
                attention_mask_p = torch.cat(
                    (
                        attention_mask_p,
                        torch.zeros((batch_size, difference), dtype=torch.bool).to(attention_mask_p),
                    ),
                    dim=1,
                )
                position_ids_p = torch.cat(
                    (position_ids_p, torch.full((batch_size, difference), -1).to(position_ids_p)), dim=1
                )

        return inputs_embeds_p, attention_mask_p, position_ids_p, labels_p

    def get_xgr_logits_processor(self, response_format) -> List[LogitsProcessor]:
        raise NotImplementedError("This method is not implemented for VILA model.")
        # Convert response format to logits processor
        import xgrammar as xgr

        logging.info("[XGrammar] Compiling grammar for contrained output")

        if self.grammar_compiler is None:
            # logging.info(f"[XGrammar] {self.tokenizer}, {self.tokenizer.vocab_size}, {self.vocab_size}")
            self.grammar_compiler = xgr.GrammarCompiler(
                xgr.TokenizerInfo.from_huggingface(self.tokenizer, vocab_size=self.vocab_size)
            )

        if response_format.type == "json_schema":
            compiled_grammar = self.grammar_compiler.compile_json_schema(
                response_format.json_schema.schema_,
                indent=2,
            )
        else:
            compiled_grammar = self.grammar_compiler.compile_builtin_json_grammar()

        return [xgr.contrib.hf.LogitsProcessor(compiled_grammar)]

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        media: Optional[Dict[str, List[torch.Tensor]]] = None,
        images: Optional[torch.FloatTensor] = None,
        media_config: Optional[List] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        packing: bool = True,
        force_packing: bool = False,
        seqlens_in_batch: Optional[torch.LongTensor] = None,
        dpo_forward: bool = False,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        self.freezed_module_patch()

        if images is not None:
            if media is not None:
                raise ValueError("Both 'media' and 'images' are provided. Please provide only one.")
            print("The 'images' argument is deprecated. Please use 'media' instead.")
            media = {"image": images}

        if media_config is None:
            media_config = defaultdict(dict)

        if inputs_embeds is None:
            inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask)

        if force_packing or (packing and self.training and not dpo_forward):
            if seqlens_in_batch is None:
                seqlens_in_batch = torch.sum(attention_mask, dim=1)
            set_seqlens_in_batch(seqlens_in_batch)

            (inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data(
                inputs_embeds, attention_mask, position_ids, labels
            )

        outputs = self.llm(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            labels=labels,
            **kwargs,
        )

        if self.training and getattr(self.config, "time_token_ids", []):
            outputs.loss = soft_cross_entropy(
                outputs.logits,
                labels,
                soft_tokens=self.config.time_token_ids,
                std=self.config.soft_ce_std,
            )

        if dpo_forward:
            return outputs.logits, labels

        return outputs

    @torch.inference_mode()
    def generate(
        self,
        input_ids: Optional[torch.FloatTensor] = None,
        media: Optional[Dict[str, List[torch.Tensor]]] = None,
        media_config: Dict[str, Dict[str, Any]] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        **generation_kwargs,
    ):
        inputs_embeds, _, attention_mask = self._embed(input_ids, media, media_config, None, attention_mask)
        return self.llm.generate(inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generation_kwargs)

    @torch.inference_mode()
    def generate_content(
        self,
        prompt: Union[str, List],
        generation_config: Optional[GenerationConfig] = None,
        response_format=None,
    ) -> str:
        # TODO(zhijianl): Support directly taking conversation as input
        conversation = [{"from": "human", "value": prompt}]

        # Convert response format to logits processor
        if response_format:
            xgr_logits_processor = self.get_xgr_logits_processor(response_format)
        else:
            xgr_logits_processor = None

        # Extract media from the conversation

        # TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
        media = extract_media(conversation, self.config)

        # Process media
        media_config = defaultdict(dict)
        for name in media:
            if name == "image":
                if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]:
                    self.config.image_processor = self.vision_tower.image_processor
                    if self.config.image_aspect_ratio == "dynamic":
                        images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half()
                        conversation[0]["value"] = conversation[0]["value"].replace(
                            DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0]
                        )
                    else:
                        if type(self.config.s2_scales) is str:
                            self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
                        images, block_sizes = process_image(
                            media["image"][0], self.config, None, enable_dynamic_s2=True
                        )
                        images = images.half()
                        media_config[name]["block_sizes"] = [block_sizes]
                else:
                    images = process_images(media["image"], self.vision_tower.image_processor, self.config).half()
                media[name] = [image for image in images]
            elif name == "video":
                if self.config.image_aspect_ratio == "dynamic" and self.config.video_max_tiles > 1:
                    media[name] = [
                        process_images(
                            images,
                            self.vision_tower.image_processor,
                            self.config,
                            enable_dynamic_res=True,
                            max_tiles=self.config.video_max_tiles,
                        ).half()
                        for images in media[name]
                    ]
                elif self.config.image_aspect_ratio == "dynamic_s2" and self.config.video_max_tiles > 1:
                    self.config.image_processor = self.vision_tower.image_processor
                    if type(self.config.s2_scales) is str:
                        self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
                    media[name] = [
                        torch.cat(
                            [
                                process_image(
                                    image,
                                    self.config,
                                    None,
                                    enable_dynamic_s2=True,
                                    max_tiles=self.config.video_max_tiles,
                                )[0].half()
                                for image in images
                            ]
                        )
                        for images in media[name]
                    ]
                else:
                    media[name] = [
                        process_images(images, self.vision_tower.image_processor, self.config).half()
                        for images in media[name]
                    ]
            else:
                raise ValueError(f"Unsupported media type: {name}")

        # Tokenize the conversation
        input_ids = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True).cuda().unsqueeze(0)

        # Set up the generation config
        generation_config = generation_config or self.default_generation_config

        # Generate the response
        try:
            output_ids = self.generate(
                input_ids=input_ids,
                media=media,
                media_config=media_config,
                generation_config=generation_config,
                logits_processor=xgr_logits_processor,  # structured generation
            )
        except ValueError:
            if not generation_config.do_sample:
                raise
            # FIXME(zhijianl): This is a temporary workaround for the sampling issue
            logging.warning("Generation failed with sampling, retrying with greedy decoding.")
            generation_config.do_sample = False
            output_ids = self.generate(
                input_ids=input_ids,
                media=media,
                media_config=media_config,
                generation_config=generation_config,
                logits_processor=xgr_logits_processor,
            )

        # Decode the response
        response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
        return response

    @property
    def default_generation_config(self) -> GenerationConfig:
        generation_config = copy.deepcopy(self.generation_config or GenerationConfig())
        if self.tokenizer.eos_token_id is None:
            raise ValueError("Tokenizer must have an EOS token")
        if generation_config.max_length == GenerationConfig().max_length:
            generation_config.max_length = self.tokenizer.model_max_length
        if generation_config.pad_token_id is None:
            generation_config.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
        if generation_config.bos_token_id is None:
            generation_config.bos_token_id = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
        if generation_config.eos_token_id is None:
            generation_config.eos_token_id = self.tokenizer.eos_token_id
        return generation_config