Ligeng-Zhu
commited on
Upload files with `vila-upload`.
Browse filesUpload config.json
Upload configuration_llava.py
Upload trainer_state.json
Upload constants.py
Upload utils.py
Upload builder.py
Upload llava_llama.py
Upload llava_arch.py
Upload README.md
Upload llm/tokenizer_config.json
Upload llm/config.json
Upload llm/generation_config.json
Upload llm/special_tokens_map.json
Upload llm/model.safetensors.index.json
Upload llm/model-00002-of-00002.safetensors
Upload llm/model-00001-of-00002.safetensors
Upload llm/tokenizer.model
Upload mm_projector/config.json
Upload mm_projector/model.safetensors
Upload vision_tower/config.json
Upload vision_tower/model.safetensors
Upload vision_tower/preprocessor_config.json
- README.md +56 -0
- builder.py +293 -0
- config.json +257 -0
- configuration_llava.py +53 -0
- constants.py +31 -0
- llava_arch.py +1552 -0
- llava_llama.py +1193 -0
- llm/config.json +32 -0
- llm/generation_config.json +7 -0
- llm/model-00001-of-00002.safetensors +3 -0
- llm/model-00002-of-00002.safetensors +3 -0
- llm/model.safetensors.index.json +298 -0
- llm/special_tokens_map.json +24 -0
- llm/tokenizer.model +3 -0
- llm/tokenizer_config.json +43 -0
- mm_projector/config.json +10 -0
- mm_projector/model.safetensors +3 -0
- trainer_state.json +0 -0
- utils.py +96 -0
- vision_tower/config.json +19 -0
- vision_tower/model.safetensors +3 -0
- vision_tower/preprocessor_config.json +24 -0
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
library_name: transformers
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
tags:
|
6 |
+
- VILA
|
7 |
+
- VLM
|
8 |
+
---
|
9 |
+
|
10 |
+
# VILA Model Card
|
11 |
+
|
12 |
+
## Model details
|
13 |
+
|
14 |
+
**Model type:**
|
15 |
+
VILA is a visual language model (VLM) pretrained with interleaved image-text data at scale, enabling multi-image VLM. VILA is deployable on the edge, including Jetson Orin and laptop by AWQ 4bit quantization through TinyChat framework. We find: (1) image-text pairs are not enough, interleaved image-text is essential; (2) unfreezing LLM during interleaved image-text pre-training enables in-context learning; (3)re-blending text-only instruction data is crucial to boost both VLM and text-only performance. VILA unveils appealing capabilities, including: multi-image reasoning, in-context learning, visual chain-of-thought, and better world knowledge.
|
16 |
+
|
17 |
+
**Model date:**
|
18 |
+
VILA1.5-3b was trained in May 2024.
|
19 |
+
|
20 |
+
**Paper or resources for more information:**
|
21 |
+
https://github.com/Efficient-Large-Model/VILA
|
22 |
+
|
23 |
+
```
|
24 |
+
@misc{lin2023vila,
|
25 |
+
title={VILA: On Pre-training for Visual Language Models},
|
26 |
+
author={Ji Lin and Hongxu Yin and Wei Ping and Yao Lu and Pavlo Molchanov and Andrew Tao and Huizi Mao and Jan Kautz and Mohammad Shoeybi and Song Han},
|
27 |
+
year={2023},
|
28 |
+
eprint={2312.07533},
|
29 |
+
archivePrefix={arXiv},
|
30 |
+
primaryClass={cs.CV}
|
31 |
+
}
|
32 |
+
```
|
33 |
+
|
34 |
+
## License
|
35 |
+
- The code is released under the Apache 2.0 license as found in the [LICENSE](./LICENSE) file.
|
36 |
+
- The pretrained weights are released under the [CC-BY-NC-SA-4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
|
37 |
+
- The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms:
|
38 |
+
- [Model License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA
|
39 |
+
- [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI
|
40 |
+
- [Dataset Licenses](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/LICENSE) for each one used during training.
|
41 |
+
|
42 |
+
**Where to send questions or comments about the model:**
|
43 |
+
https://github.com/Efficient-Large-Model/VILA/issues
|
44 |
+
|
45 |
+
## Intended use
|
46 |
+
**Primary intended uses:**
|
47 |
+
The primary use of VILA is research on large multimodal models and chatbots.
|
48 |
+
|
49 |
+
**Primary intended users:**
|
50 |
+
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
|
51 |
+
|
52 |
+
## Training dataset
|
53 |
+
See [Dataset Preparation](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/README.md) for more details.
|
54 |
+
|
55 |
+
## Evaluation dataset
|
56 |
+
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.
|
builder.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
import shutil
|
19 |
+
import warnings
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
|
23 |
+
BitsAndBytesConfig, PretrainedConfig)
|
24 |
+
|
25 |
+
from .llava_llama import LlavaLlamaModel
|
26 |
+
|
27 |
+
# from llava.model import *
|
28 |
+
# from llava.model.utils import is_mm_model
|
29 |
+
|
30 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
31 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
32 |
+
|
33 |
+
LOGDIR = "."
|
34 |
+
|
35 |
+
# Model Constants
|
36 |
+
IGNORE_INDEX = -100
|
37 |
+
IMAGE_TOKEN_INDEX = -200
|
38 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
39 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
40 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
41 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
42 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
43 |
+
|
44 |
+
|
45 |
+
def is_mm_model(model_path):
|
46 |
+
"""
|
47 |
+
Check if the model at the given path is a visual language model.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
model_path (str): The path to the model.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
bool: True if the model is an MM model, False otherwise.
|
54 |
+
"""
|
55 |
+
config = AutoConfig.from_pretrained(model_path)
|
56 |
+
architectures = config.architectures
|
57 |
+
for architecture in architectures:
|
58 |
+
if "llava" in architecture.lower():
|
59 |
+
return True
|
60 |
+
return False
|
61 |
+
|
62 |
+
|
63 |
+
def load_pretrained_model(
|
64 |
+
model_path,
|
65 |
+
model_name,
|
66 |
+
model_base=None,
|
67 |
+
load_8bit=False,
|
68 |
+
load_4bit=False,
|
69 |
+
device_map="auto",
|
70 |
+
device="cuda",
|
71 |
+
**kwargs,
|
72 |
+
):
|
73 |
+
kwargs = {"device_map": device_map, **kwargs}
|
74 |
+
|
75 |
+
if device != "cuda":
|
76 |
+
kwargs["device_map"] = {"": device}
|
77 |
+
|
78 |
+
if load_8bit:
|
79 |
+
kwargs["load_in_8bit"] = True
|
80 |
+
elif load_4bit:
|
81 |
+
kwargs["load_in_4bit"] = True
|
82 |
+
kwargs["quantization_config"] = BitsAndBytesConfig(
|
83 |
+
load_in_4bit=True,
|
84 |
+
bnb_4bit_compute_dtype=torch.float16,
|
85 |
+
bnb_4bit_use_double_quant=True,
|
86 |
+
bnb_4bit_quant_type="nf4",
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
kwargs["torch_dtype"] = torch.float16
|
90 |
+
# kwargs["torch_dtype"] = torch.bfloat16
|
91 |
+
|
92 |
+
if is_mm_model(model_path):
|
93 |
+
# Load LLaVA model
|
94 |
+
## TODO @yunhao: mind fixing lora
|
95 |
+
if "lora" in model_name.lower() and model_base is None:
|
96 |
+
warnings.warn(
|
97 |
+
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged."
|
98 |
+
)
|
99 |
+
if (
|
100 |
+
"lora" in model_name.lower() or "dora" in model_name.lower()
|
101 |
+
) and model_base is not None:
|
102 |
+
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
103 |
+
print(lora_cfg_pretrained)
|
104 |
+
print("Loading LLaVA from base model...")
|
105 |
+
config = AutoConfig.from_pretrained(model_base)
|
106 |
+
prepare_config_for_eval(config, kwargs)
|
107 |
+
model = LlavaLlamaModel.from_pretrained(
|
108 |
+
model_base, low_cpu_mem_usage=True, config=config, **kwargs
|
109 |
+
)
|
110 |
+
tokenizer = model.tokenizer
|
111 |
+
token_num, tokem_dim = (
|
112 |
+
model.llm.lm_head.out_features,
|
113 |
+
model.llm.lm_head.in_features,
|
114 |
+
)
|
115 |
+
if model.llm.lm_head.weight.shape[0] != token_num:
|
116 |
+
model.llm.lm_head.weight = torch.nn.Parameter(
|
117 |
+
torch.empty(
|
118 |
+
token_num, tokem_dim, device=model.device, dtype=model.dtype
|
119 |
+
)
|
120 |
+
)
|
121 |
+
model.llm.embed_tokens.weight = torch.nn.Parameter(
|
122 |
+
torch.empty(
|
123 |
+
token_num, tokem_dim, device=model.device, dtype=model.dtype
|
124 |
+
)
|
125 |
+
)
|
126 |
+
|
127 |
+
print("Loading additional LLaVA weights...")
|
128 |
+
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
|
129 |
+
non_lora_trainables = torch.load(
|
130 |
+
os.path.join(model_path, "non_lora_trainables.bin"),
|
131 |
+
map_location="cpu",
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
# this is probably from HF Hub
|
135 |
+
from huggingface_hub import hf_hub_download
|
136 |
+
|
137 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
138 |
+
cache_file = hf_hub_download(
|
139 |
+
repo_id=repo_id, filename=filename, subfolder=subfolder
|
140 |
+
)
|
141 |
+
return torch.load(cache_file, map_location="cpu")
|
142 |
+
|
143 |
+
non_lora_trainables = load_from_hf(
|
144 |
+
model_path, "non_lora_trainables.bin"
|
145 |
+
)
|
146 |
+
non_lora_trainables = {
|
147 |
+
(k[11:] if k.startswith("base_model.") else k): v
|
148 |
+
for k, v in non_lora_trainables.items()
|
149 |
+
}
|
150 |
+
if any(k.startswith("model.model.") for k in non_lora_trainables):
|
151 |
+
non_lora_trainables = {
|
152 |
+
(k[6:] if k.startswith("model.") else k): v
|
153 |
+
for k, v in non_lora_trainables.items()
|
154 |
+
}
|
155 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
156 |
+
|
157 |
+
from peft import PeftModel
|
158 |
+
|
159 |
+
print("Loading LoRA weights...")
|
160 |
+
model = PeftModel.from_pretrained(model, model_path)
|
161 |
+
print("Merging LoRA weights...")
|
162 |
+
model = model.merge_and_unload()
|
163 |
+
print("Model is loaded...")
|
164 |
+
## TODO @yunhao: mind fixing this
|
165 |
+
elif model_base is not None:
|
166 |
+
# this may be mm projector only
|
167 |
+
print("Loading LLaVA from base model...")
|
168 |
+
cfg_pretrained = AutoConfig.from_pretrained(
|
169 |
+
model_path, trust_remote_code=True
|
170 |
+
)
|
171 |
+
mm_config_wrapper(config, kwargs)
|
172 |
+
if "mpt" in model_name.lower():
|
173 |
+
if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")):
|
174 |
+
shutil.copyfile(
|
175 |
+
os.path.join(model_base, "configuration_mpt.py"),
|
176 |
+
os.path.join(model_path, "configuration_mpt.py"),
|
177 |
+
)
|
178 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
179 |
+
model = LlavaMPTForCausalLM.from_pretrained(
|
180 |
+
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
184 |
+
model_base, use_fast=False, legacy=False
|
185 |
+
)
|
186 |
+
model = LlavaLlamaForCausalLM.from_pretrained(
|
187 |
+
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
config = AutoConfig.from_pretrained(model_path)
|
191 |
+
config.resume_path = model_path
|
192 |
+
prepare_config_for_eval(config, kwargs)
|
193 |
+
if "mpt" in model_name.lower():
|
194 |
+
model = LlavaMPTForCausalLM.from_pretrained(
|
195 |
+
model_path, config=config, low_cpu_mem_usage=True, **kwargs
|
196 |
+
)
|
197 |
+
elif "mistral" in model_name.lower() or "mixtral" in model_name.lower():
|
198 |
+
model = LlavaMistralForCausalLM.from_pretrained(
|
199 |
+
model_path, config=config, low_cpu_mem_usage=True, **kwargs
|
200 |
+
)
|
201 |
+
elif "gemma" in model_name.lower():
|
202 |
+
model = LlavaGemmaForCausalLM.from_pretrained(
|
203 |
+
model_path, config=config, low_cpu_mem_usage=True, **kwargs
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
# kentang-mit@: llama-2 model
|
207 |
+
# config._attn_implementation = "flash_attention_2"
|
208 |
+
model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs)
|
209 |
+
tokenizer = model.tokenizer
|
210 |
+
else:
|
211 |
+
# Load language model
|
212 |
+
if model_base is not None:
|
213 |
+
# PEFT model
|
214 |
+
from peft import PeftModel
|
215 |
+
|
216 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
217 |
+
model = AutoModelForCausalLM.from_pretrained(
|
218 |
+
model_base, low_cpu_mem_usage=True, **kwargs
|
219 |
+
)
|
220 |
+
print(f"Loading LoRA weights from {model_path}")
|
221 |
+
model = PeftModel.from_pretrained(model, model_path)
|
222 |
+
print(f"Merging weights")
|
223 |
+
model = model.merge_and_unload()
|
224 |
+
print("Convert to FP16...")
|
225 |
+
model.to(torch.float16)
|
226 |
+
else:
|
227 |
+
if "mpt" in model_name.lower():
|
228 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
229 |
+
model = AutoModelForCausalLM.from_pretrained(
|
230 |
+
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs
|
231 |
+
)
|
232 |
+
else:
|
233 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
234 |
+
model_path, use_fast=False, legacy=False
|
235 |
+
)
|
236 |
+
model = AutoModelForCausalLM.from_pretrained(
|
237 |
+
model_path, low_cpu_mem_usage=True, **kwargs
|
238 |
+
)
|
239 |
+
model.eval()
|
240 |
+
image_processor = None
|
241 |
+
if is_mm_model(model_path):
|
242 |
+
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
243 |
+
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
244 |
+
if mm_use_im_patch_token:
|
245 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
246 |
+
if mm_use_im_start_end:
|
247 |
+
tokenizer.add_tokens(
|
248 |
+
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
|
249 |
+
)
|
250 |
+
model.resize_token_embeddings(len(tokenizer))
|
251 |
+
vision_tower = model.get_vision_tower()
|
252 |
+
vision_tower.to(device=device, dtype=torch.float16)
|
253 |
+
# vision_tower.to(device=device, dtype=torch.bfloat16)
|
254 |
+
mm_projector = model.get_mm_projector()
|
255 |
+
mm_projector.to(device=device, dtype=torch.float16)
|
256 |
+
# mm_projector.to(device=device, dtype=torch.bfloat16)
|
257 |
+
image_processor = vision_tower.image_processor
|
258 |
+
|
259 |
+
if hasattr(model.llm.config, "max_sequence_length"):
|
260 |
+
context_len = model.config.max_sequence_length
|
261 |
+
else:
|
262 |
+
context_len = 2048
|
263 |
+
|
264 |
+
return tokenizer, model, image_processor, context_len
|
265 |
+
|
266 |
+
|
267 |
+
def parse_model_name_or_path(config: PretrainedConfig, model_name="llm", suffix="_cfg"):
|
268 |
+
target_model = f"{model_name}{suffix}"
|
269 |
+
target_cfg = getattr(config, target_model, None)
|
270 |
+
|
271 |
+
if isinstance(target_cfg, str):
|
272 |
+
return target_cfg
|
273 |
+
elif isinstance(target_cfg, dict):
|
274 |
+
return target_cfg["architectures"][0]
|
275 |
+
else:
|
276 |
+
raise ValueError(f"Invalid {target_model} configuration!")
|
277 |
+
|
278 |
+
|
279 |
+
def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict):
|
280 |
+
try:
|
281 |
+
# compatible with deprecated config convention
|
282 |
+
if getattr(config, "vision_tower_cfg", None) is None:
|
283 |
+
config.vision_tower_cfg = config.mm_vision_tower
|
284 |
+
except AttributeError:
|
285 |
+
raise ValueError(
|
286 |
+
f"Invalid configuration! Cannot find vision_tower in config:\n{config}"
|
287 |
+
)
|
288 |
+
|
289 |
+
config.model_dtype = kwargs.pop("torch_dtype").__str__()
|
290 |
+
# siglip does not support device_map = "auto"
|
291 |
+
vision_tower_name = parse_model_name_or_path(config, "vision_tower")
|
292 |
+
if "siglip" in vision_tower_name.lower():
|
293 |
+
kwargs["device_map"] = "cuda"
|
config.json
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./vlm",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaLlamaModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "llava_llama.LlavaLlamaConfig",
|
8 |
+
"AutoModel": "llava_llama.LlavaLlamaModel"
|
9 |
+
},
|
10 |
+
"drop_path_rate": 0.0,
|
11 |
+
"hidden_size": 2560,
|
12 |
+
"image_aspect_ratio": "resize",
|
13 |
+
"interpolate_mode": "linear",
|
14 |
+
"llm_cfg": {
|
15 |
+
"_name_or_path": "./llm",
|
16 |
+
"add_cross_attention": false,
|
17 |
+
"architectures": [
|
18 |
+
"LlamaForCausalLM"
|
19 |
+
],
|
20 |
+
"attention_bias": false,
|
21 |
+
"attention_dropout": 0.0,
|
22 |
+
"bad_words_ids": null,
|
23 |
+
"begin_suppress_tokens": null,
|
24 |
+
"bos_token_id": 1,
|
25 |
+
"chunk_size_feed_forward": 0,
|
26 |
+
"cross_attention_hidden_size": null,
|
27 |
+
"decoder_start_token_id": null,
|
28 |
+
"diversity_penalty": 0.0,
|
29 |
+
"do_sample": false,
|
30 |
+
"early_stopping": false,
|
31 |
+
"encoder_no_repeat_ngram_size": 0,
|
32 |
+
"eos_token_id": 2,
|
33 |
+
"exponential_decay_length_penalty": null,
|
34 |
+
"finetuning_task": null,
|
35 |
+
"forced_bos_token_id": null,
|
36 |
+
"forced_eos_token_id": null,
|
37 |
+
"hidden_act": "silu",
|
38 |
+
"hidden_size": 2560,
|
39 |
+
"id2label": {
|
40 |
+
"0": "LABEL_0",
|
41 |
+
"1": "LABEL_1"
|
42 |
+
},
|
43 |
+
"initializer_range": 0.02,
|
44 |
+
"intermediate_size": 6912,
|
45 |
+
"is_decoder": false,
|
46 |
+
"is_encoder_decoder": false,
|
47 |
+
"label2id": {
|
48 |
+
"LABEL_0": 0,
|
49 |
+
"LABEL_1": 1
|
50 |
+
},
|
51 |
+
"length_penalty": 1.0,
|
52 |
+
"max_length": 20,
|
53 |
+
"max_position_embeddings": 4096,
|
54 |
+
"min_length": 0,
|
55 |
+
"model_max_length": 4096,
|
56 |
+
"model_type": "llama",
|
57 |
+
"no_repeat_ngram_size": 0,
|
58 |
+
"num_attention_heads": 20,
|
59 |
+
"num_beam_groups": 1,
|
60 |
+
"num_beams": 1,
|
61 |
+
"num_hidden_layers": 32,
|
62 |
+
"num_key_value_heads": 20,
|
63 |
+
"num_return_sequences": 1,
|
64 |
+
"output_attentions": false,
|
65 |
+
"output_hidden_states": false,
|
66 |
+
"output_scores": false,
|
67 |
+
"pad_token_id": 0,
|
68 |
+
"prefix": null,
|
69 |
+
"pretraining_tp": 1,
|
70 |
+
"problem_type": null,
|
71 |
+
"pruned_heads": {},
|
72 |
+
"remove_invalid_values": false,
|
73 |
+
"repetition_penalty": 1.0,
|
74 |
+
"return_dict": true,
|
75 |
+
"return_dict_in_generate": false,
|
76 |
+
"rms_norm_eps": 1e-05,
|
77 |
+
"rope_scaling": null,
|
78 |
+
"rope_theta": 10000.0,
|
79 |
+
"sep_token_id": null,
|
80 |
+
"suppress_tokens": null,
|
81 |
+
"task_specific_params": null,
|
82 |
+
"temperature": 1.0,
|
83 |
+
"tf_legacy_loss": false,
|
84 |
+
"tie_encoder_decoder": false,
|
85 |
+
"tie_word_embeddings": false,
|
86 |
+
"tokenizer_class": null,
|
87 |
+
"tokenizer_model_max_length": 4096,
|
88 |
+
"tokenizer_padding_side": "right",
|
89 |
+
"top_k": 50,
|
90 |
+
"top_p": 1.0,
|
91 |
+
"torch_dtype": "bfloat16",
|
92 |
+
"torchscript": false,
|
93 |
+
"typical_p": 1.0,
|
94 |
+
"use_bfloat16": false,
|
95 |
+
"use_cache": true,
|
96 |
+
"vocab_size": 32000
|
97 |
+
},
|
98 |
+
"mm_hidden_size": 1152,
|
99 |
+
"mm_projector_cfg": {
|
100 |
+
"_name_or_path": "./mm_projector",
|
101 |
+
"add_cross_attention": false,
|
102 |
+
"architectures": [
|
103 |
+
"MultimodalProjector"
|
104 |
+
],
|
105 |
+
"bad_words_ids": null,
|
106 |
+
"begin_suppress_tokens": null,
|
107 |
+
"bos_token_id": null,
|
108 |
+
"chunk_size_feed_forward": 0,
|
109 |
+
"cross_attention_hidden_size": null,
|
110 |
+
"decoder_start_token_id": null,
|
111 |
+
"diversity_penalty": 0.0,
|
112 |
+
"do_sample": false,
|
113 |
+
"early_stopping": false,
|
114 |
+
"encoder_no_repeat_ngram_size": 0,
|
115 |
+
"eos_token_id": null,
|
116 |
+
"exponential_decay_length_penalty": null,
|
117 |
+
"finetuning_task": null,
|
118 |
+
"forced_bos_token_id": null,
|
119 |
+
"forced_eos_token_id": null,
|
120 |
+
"id2label": {
|
121 |
+
"0": "LABEL_0",
|
122 |
+
"1": "LABEL_1"
|
123 |
+
},
|
124 |
+
"is_decoder": false,
|
125 |
+
"is_encoder_decoder": false,
|
126 |
+
"label2id": {
|
127 |
+
"LABEL_0": 0,
|
128 |
+
"LABEL_1": 1
|
129 |
+
},
|
130 |
+
"length_penalty": 1.0,
|
131 |
+
"max_length": 20,
|
132 |
+
"min_length": 0,
|
133 |
+
"mm_projector_type": "mlp_downsample",
|
134 |
+
"model_type": "v2l_projector",
|
135 |
+
"no_repeat_ngram_size": 0,
|
136 |
+
"num_beam_groups": 1,
|
137 |
+
"num_beams": 1,
|
138 |
+
"num_return_sequences": 1,
|
139 |
+
"output_attentions": false,
|
140 |
+
"output_hidden_states": false,
|
141 |
+
"output_scores": false,
|
142 |
+
"pad_token_id": null,
|
143 |
+
"prefix": null,
|
144 |
+
"problem_type": null,
|
145 |
+
"pruned_heads": {},
|
146 |
+
"remove_invalid_values": false,
|
147 |
+
"repetition_penalty": 1.0,
|
148 |
+
"return_dict": true,
|
149 |
+
"return_dict_in_generate": false,
|
150 |
+
"sep_token_id": null,
|
151 |
+
"suppress_tokens": null,
|
152 |
+
"task_specific_params": null,
|
153 |
+
"temperature": 1.0,
|
154 |
+
"tf_legacy_loss": false,
|
155 |
+
"tie_encoder_decoder": false,
|
156 |
+
"tie_word_embeddings": true,
|
157 |
+
"tokenizer_class": null,
|
158 |
+
"top_k": 50,
|
159 |
+
"top_p": 1.0,
|
160 |
+
"torch_dtype": "bfloat16",
|
161 |
+
"torchscript": false,
|
162 |
+
"typical_p": 1.0,
|
163 |
+
"use_bfloat16": false
|
164 |
+
},
|
165 |
+
"mm_projector_lr": null,
|
166 |
+
"mm_use_im_patch_token": false,
|
167 |
+
"mm_use_im_start_end": false,
|
168 |
+
"mm_vision_select_feature": "cls_patch",
|
169 |
+
"mm_vision_select_layer": -2,
|
170 |
+
"model_dtype": "torch.bfloat16",
|
171 |
+
"model_type": "llava_llama",
|
172 |
+
"num_video_frames": 8,
|
173 |
+
"resume_path": "./vlm",
|
174 |
+
"s2": false,
|
175 |
+
"s2_max_split_size": 336,
|
176 |
+
"s2_scales": "336,672,1008",
|
177 |
+
"transformers_version": "4.36.2",
|
178 |
+
"tune_language_model": true,
|
179 |
+
"tune_mm_projector": true,
|
180 |
+
"tune_vision_tower": true,
|
181 |
+
"vision_resolution": -1,
|
182 |
+
"vision_tower_cfg": {
|
183 |
+
"_name_or_path": "./vision_tower",
|
184 |
+
"add_cross_attention": false,
|
185 |
+
"architectures": [
|
186 |
+
"SiglipVisionModel"
|
187 |
+
],
|
188 |
+
"attention_dropout": 0.0,
|
189 |
+
"bad_words_ids": null,
|
190 |
+
"begin_suppress_tokens": null,
|
191 |
+
"bos_token_id": null,
|
192 |
+
"chunk_size_feed_forward": 0,
|
193 |
+
"cross_attention_hidden_size": null,
|
194 |
+
"decoder_start_token_id": null,
|
195 |
+
"diversity_penalty": 0.0,
|
196 |
+
"do_sample": false,
|
197 |
+
"early_stopping": false,
|
198 |
+
"encoder_no_repeat_ngram_size": 0,
|
199 |
+
"eos_token_id": null,
|
200 |
+
"exponential_decay_length_penalty": null,
|
201 |
+
"finetuning_task": null,
|
202 |
+
"forced_bos_token_id": null,
|
203 |
+
"forced_eos_token_id": null,
|
204 |
+
"hidden_act": "gelu_pytorch_tanh",
|
205 |
+
"hidden_size": 1152,
|
206 |
+
"id2label": {
|
207 |
+
"0": "LABEL_0",
|
208 |
+
"1": "LABEL_1"
|
209 |
+
},
|
210 |
+
"image_size": 384,
|
211 |
+
"intermediate_size": 4304,
|
212 |
+
"is_decoder": false,
|
213 |
+
"is_encoder_decoder": false,
|
214 |
+
"label2id": {
|
215 |
+
"LABEL_0": 0,
|
216 |
+
"LABEL_1": 1
|
217 |
+
},
|
218 |
+
"layer_norm_eps": 1e-06,
|
219 |
+
"length_penalty": 1.0,
|
220 |
+
"max_length": 20,
|
221 |
+
"min_length": 0,
|
222 |
+
"model_type": "siglip_vision_model",
|
223 |
+
"no_repeat_ngram_size": 0,
|
224 |
+
"num_attention_heads": 16,
|
225 |
+
"num_beam_groups": 1,
|
226 |
+
"num_beams": 1,
|
227 |
+
"num_channels": 3,
|
228 |
+
"num_hidden_layers": 27,
|
229 |
+
"num_return_sequences": 1,
|
230 |
+
"output_attentions": false,
|
231 |
+
"output_hidden_states": false,
|
232 |
+
"output_scores": false,
|
233 |
+
"pad_token_id": null,
|
234 |
+
"patch_size": 14,
|
235 |
+
"prefix": null,
|
236 |
+
"problem_type": null,
|
237 |
+
"pruned_heads": {},
|
238 |
+
"remove_invalid_values": false,
|
239 |
+
"repetition_penalty": 1.0,
|
240 |
+
"return_dict": true,
|
241 |
+
"return_dict_in_generate": false,
|
242 |
+
"sep_token_id": null,
|
243 |
+
"suppress_tokens": null,
|
244 |
+
"task_specific_params": null,
|
245 |
+
"temperature": 1.0,
|
246 |
+
"tf_legacy_loss": false,
|
247 |
+
"tie_encoder_decoder": false,
|
248 |
+
"tie_word_embeddings": true,
|
249 |
+
"tokenizer_class": null,
|
250 |
+
"top_k": 50,
|
251 |
+
"top_p": 1.0,
|
252 |
+
"torch_dtype": "bfloat16",
|
253 |
+
"torchscript": false,
|
254 |
+
"typical_p": 1.0,
|
255 |
+
"use_bfloat16": false
|
256 |
+
}
|
257 |
+
}
|
configuration_llava.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class LlavaConfig(PretrainedConfig):
|
5 |
+
model_type = "llava"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
llm_cfg=None,
|
10 |
+
vision_tower_cfg=None,
|
11 |
+
mm_projector_cfg=None,
|
12 |
+
architectures=None,
|
13 |
+
resume_path=None,
|
14 |
+
hidden_size=None,
|
15 |
+
mm_hidden_size=None,
|
16 |
+
image_aspect_ratio=None,
|
17 |
+
num_video_frames=None,
|
18 |
+
fps=None,
|
19 |
+
mm_vision_select_layer=None,
|
20 |
+
mm_vision_select_feature=None,
|
21 |
+
mm_use_im_start_end=False,
|
22 |
+
mm_use_im_patch_token=True,
|
23 |
+
mm_projector_lr=None,
|
24 |
+
vision_resolution=None,
|
25 |
+
interpolate_mode=None,
|
26 |
+
s2=None,
|
27 |
+
s2_scales=None,
|
28 |
+
s2_max_split_size=None,
|
29 |
+
**kwargs
|
30 |
+
):
|
31 |
+
super().__init__(**kwargs)
|
32 |
+
self.architectures = architectures
|
33 |
+
self.llm_cfg = llm_cfg
|
34 |
+
self.vision_tower_cfg = vision_tower_cfg
|
35 |
+
self.mm_projector_cfg = mm_projector_cfg
|
36 |
+
self.resume_path = resume_path
|
37 |
+
|
38 |
+
self.hidden_size = hidden_size
|
39 |
+
self.mm_hidden_size = mm_hidden_size
|
40 |
+
self.image_aspect_ratio = image_aspect_ratio
|
41 |
+
self.num_video_frames = num_video_frames
|
42 |
+
self.fps = fps
|
43 |
+
self.mm_vision_select_layer = mm_vision_select_layer
|
44 |
+
self.mm_vision_select_feature = mm_vision_select_feature
|
45 |
+
self.mm_use_im_start_end = mm_use_im_start_end
|
46 |
+
self.mm_use_im_start_end = mm_use_im_start_end
|
47 |
+
self.mm_use_im_patch_token = mm_use_im_patch_token
|
48 |
+
self.mm_projector_lr = mm_projector_lr
|
49 |
+
self.vision_resolution = vision_resolution
|
50 |
+
self.interpolate_mode = interpolate_mode
|
51 |
+
self.s2 = s2
|
52 |
+
self.s2_scales = s2_scales
|
53 |
+
self.s2_max_split_size = s2_max_split_size
|
constants.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
|
17 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
18 |
+
|
19 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
20 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
21 |
+
|
22 |
+
LOGDIR = "."
|
23 |
+
|
24 |
+
# Model Constants
|
25 |
+
IGNORE_INDEX = -100
|
26 |
+
IMAGE_TOKEN_INDEX = -200
|
27 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
28 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
29 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
30 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
31 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
llava_arch.py
ADDED
@@ -0,0 +1,1552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import logging
|
16 |
+
import math
|
17 |
+
import os
|
18 |
+
import os.path as osp
|
19 |
+
import sys
|
20 |
+
import warnings
|
21 |
+
from abc import ABC, abstractmethod
|
22 |
+
from collections import OrderedDict
|
23 |
+
from typing import Tuple
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.distributed as dist
|
27 |
+
import torch.nn as nn
|
28 |
+
from huggingface_hub import file_exists, repo_exists, snapshot_download
|
29 |
+
from huggingface_hub.utils import HFValidationError, validate_repo_id
|
30 |
+
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
|
31 |
+
AutoTokenizer, BitsAndBytesConfig, PretrainedConfig,
|
32 |
+
PreTrainedModel, PreTrainedTokenizer)
|
33 |
+
from transformers.modeling_utils import ContextManagers, no_init_weights
|
34 |
+
|
35 |
+
from .configuration_llava import LlavaConfig
|
36 |
+
|
37 |
+
# from .constants import DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN
|
38 |
+
|
39 |
+
|
40 |
+
# from .model.language_model.builder import build_llm_and_tokenizer
|
41 |
+
# from .model.multimodal_encoder.builder import build_vision_tower
|
42 |
+
# from .model.multimodal_projector.builder import build_mm_projector
|
43 |
+
|
44 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
45 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
46 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
47 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
48 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
49 |
+
|
50 |
+
|
51 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
52 |
+
import torch
|
53 |
+
# from llava.model.multimodal_encoder.vision_encoder import (VisionTower, VisionTowerS2)
|
54 |
+
from transformers import CLIPImageProcessor, CLIPVisionModel, PretrainedConfig
|
55 |
+
|
56 |
+
|
57 |
+
class VisionTower(nn.Module):
|
58 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
self.is_loaded = False
|
62 |
+
|
63 |
+
self.vision_tower_name = vision_tower
|
64 |
+
self.select_layer = getattr(args, "mm_vision_select_layer", -2)
|
65 |
+
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
|
66 |
+
|
67 |
+
self.cfg_only = None
|
68 |
+
|
69 |
+
def feature_select(self, image_forward_outs):
|
70 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
71 |
+
if self.select_feature == "patch":
|
72 |
+
image_features = image_features[:, 1:]
|
73 |
+
elif self.select_feature == "cls_patch":
|
74 |
+
image_features = image_features
|
75 |
+
else:
|
76 |
+
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
77 |
+
return image_features
|
78 |
+
|
79 |
+
def _maybe_resize_pos_embeds(
|
80 |
+
self,
|
81 |
+
model: PreTrainedModel,
|
82 |
+
image_processor,
|
83 |
+
resolution: int = -1,
|
84 |
+
interpolate_mode: str = "linear",
|
85 |
+
):
|
86 |
+
if resolution in [model.config.image_size, -1]:
|
87 |
+
return
|
88 |
+
print(
|
89 |
+
f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
|
90 |
+
)
|
91 |
+
embeddings = model.vision_model.embeddings
|
92 |
+
patch_size = embeddings.patch_size
|
93 |
+
num_new_tokens = int((resolution // patch_size) ** 2)
|
94 |
+
|
95 |
+
old_embeddings = embeddings.position_embedding
|
96 |
+
match interpolate_mode:
|
97 |
+
case "linear":
|
98 |
+
## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
|
99 |
+
## Step 2: Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
|
100 |
+
import torch
|
101 |
+
import torch.nn as nn
|
102 |
+
|
103 |
+
if is_deepspeed_zero3_enabled():
|
104 |
+
import deepspeed
|
105 |
+
|
106 |
+
with deepspeed.zero.GatheredParameters(
|
107 |
+
[old_embeddings.weight], modifier_rank=None
|
108 |
+
):
|
109 |
+
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
110 |
+
else:
|
111 |
+
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
112 |
+
new_embeddings = nn.Embedding(
|
113 |
+
num_new_tokens,
|
114 |
+
old_embedding_dim,
|
115 |
+
dtype=old_embeddings.weight.dtype,
|
116 |
+
device=old_embeddings.weight.device,
|
117 |
+
)
|
118 |
+
mapped_indices = (
|
119 |
+
torch.arange(num_new_tokens).to(old_embeddings.weight.device)
|
120 |
+
/ (num_new_tokens - 1)
|
121 |
+
* (old_num_tokens - 1)
|
122 |
+
)
|
123 |
+
floor_indices = torch.clamp(
|
124 |
+
mapped_indices.floor().long(), min=0, max=old_num_tokens - 1
|
125 |
+
)
|
126 |
+
ceil_indices = torch.clamp(
|
127 |
+
mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1
|
128 |
+
)
|
129 |
+
if is_deepspeed_zero3_enabled():
|
130 |
+
params = [old_embeddings.weight, new_embeddings.weight]
|
131 |
+
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
132 |
+
interpolated_embeds = (mapped_indices - floor_indices)[
|
133 |
+
:, None
|
134 |
+
] * old_embeddings.weight.data[ceil_indices, :] + (
|
135 |
+
ceil_indices - mapped_indices
|
136 |
+
)[
|
137 |
+
:, None
|
138 |
+
] * old_embeddings.weight.data[
|
139 |
+
floor_indices, :
|
140 |
+
]
|
141 |
+
else:
|
142 |
+
interpolated_embeds = (mapped_indices - floor_indices)[
|
143 |
+
:, None
|
144 |
+
] * old_embeddings.weight.data[ceil_indices, :] + (
|
145 |
+
ceil_indices - mapped_indices
|
146 |
+
)[
|
147 |
+
:, None
|
148 |
+
] * old_embeddings.weight.data[
|
149 |
+
floor_indices, :
|
150 |
+
]
|
151 |
+
new_embeddings.weight.data = interpolated_embeds
|
152 |
+
case _:
|
153 |
+
raise NotImplementedError
|
154 |
+
|
155 |
+
if hasattr(old_embeddings, "_hf_hook"):
|
156 |
+
hook = old_embeddings._hf_hook
|
157 |
+
add_hook_to_module(new_embeddings, hook)
|
158 |
+
new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
|
159 |
+
## update vision encoder's configurations
|
160 |
+
model.config.image_size = resolution
|
161 |
+
if hasattr(image_processor, "crop_size"):
|
162 |
+
# CLIP vision tower
|
163 |
+
image_processor.crop_size = resolution
|
164 |
+
else:
|
165 |
+
# SIGLIP vision tower
|
166 |
+
assert hasattr(image_processor, "size")
|
167 |
+
image_processor.size = {"height": resolution, "width": resolution}
|
168 |
+
## TODO define a '_reinitialize' method for VisionTower
|
169 |
+
embeddings.position_embedding = new_embeddings
|
170 |
+
embeddings.image_size = resolution
|
171 |
+
embeddings.num_patches = embeddings.num_positions = num_new_tokens
|
172 |
+
embeddings.position_ids = (
|
173 |
+
torch.arange(embeddings.num_positions)
|
174 |
+
.expand((1, -1))
|
175 |
+
.to(old_embeddings.weight.device)
|
176 |
+
)
|
177 |
+
|
178 |
+
def forward(self, images):
|
179 |
+
if type(images) is list:
|
180 |
+
image_features = []
|
181 |
+
for image in images:
|
182 |
+
image_forward_out = self.vision_tower(
|
183 |
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
|
184 |
+
output_hidden_states=True,
|
185 |
+
)
|
186 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
187 |
+
image_features.append(image_feature)
|
188 |
+
else:
|
189 |
+
image_forward_outs = self.vision_tower(
|
190 |
+
images.to(device=self.device, dtype=self.dtype),
|
191 |
+
output_hidden_states=True,
|
192 |
+
)
|
193 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
194 |
+
|
195 |
+
return image_features
|
196 |
+
|
197 |
+
@property
|
198 |
+
def dummy_feature(self):
|
199 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
200 |
+
|
201 |
+
@property
|
202 |
+
def dtype(self):
|
203 |
+
return self.vision_tower.dtype
|
204 |
+
|
205 |
+
@property
|
206 |
+
def device(self):
|
207 |
+
return self.vision_tower.device
|
208 |
+
|
209 |
+
@property
|
210 |
+
def config(self):
|
211 |
+
if self.is_loaded:
|
212 |
+
return self.vision_tower.config
|
213 |
+
else:
|
214 |
+
return self.cfg_only
|
215 |
+
|
216 |
+
@property
|
217 |
+
def hidden_size(self):
|
218 |
+
return self.config.hidden_size
|
219 |
+
|
220 |
+
@property
|
221 |
+
def num_patches(self):
|
222 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
223 |
+
|
224 |
+
|
225 |
+
class VisionTowerS2(VisionTower):
|
226 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
227 |
+
super().__init__(vision_tower, args, delay_load)
|
228 |
+
|
229 |
+
self.scales = list(map(int, args.s2_scales.split(",")))
|
230 |
+
self.scales.sort()
|
231 |
+
self.max_split_size = args.s2_max_split_size
|
232 |
+
|
233 |
+
@torch.no_grad()
|
234 |
+
def forward_feature(self, images):
|
235 |
+
image_forward_outs = self.vision_tower(
|
236 |
+
images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
|
237 |
+
)
|
238 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
239 |
+
return image_features
|
240 |
+
|
241 |
+
@torch.no_grad()
|
242 |
+
def forward(self, images):
|
243 |
+
if type(images) is list:
|
244 |
+
image_features = []
|
245 |
+
for image in images:
|
246 |
+
image_feature = multiscale_forward(
|
247 |
+
self.forward_feature,
|
248 |
+
image.unsqueeze(0),
|
249 |
+
img_sizes=self.scales,
|
250 |
+
max_split_size=self.max_split_size,
|
251 |
+
)
|
252 |
+
image_features.append(image_feature)
|
253 |
+
else:
|
254 |
+
image_features = multiscale_forward(
|
255 |
+
self.forward_feature,
|
256 |
+
images,
|
257 |
+
img_sizes=self.scales,
|
258 |
+
max_split_size=self.max_split_size,
|
259 |
+
)
|
260 |
+
|
261 |
+
return image_features
|
262 |
+
|
263 |
+
@property
|
264 |
+
def hidden_size(self):
|
265 |
+
return self.config.hidden_size * len(self.scales)
|
266 |
+
|
267 |
+
|
268 |
+
class CLIPVisionTower(VisionTower):
|
269 |
+
def __init__(self, model_name_or_path: str, config: PretrainedConfig):
|
270 |
+
super().__init__(model_name_or_path, config)
|
271 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(model_name_or_path)
|
272 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(
|
273 |
+
model_name_or_path, torch_dtype=eval(config.model_dtype)
|
274 |
+
)
|
275 |
+
self.is_loaded = True
|
276 |
+
|
277 |
+
|
278 |
+
class CLIPVisionTowerS2(VisionTowerS2):
|
279 |
+
def __init__(self, model_name_or_path: str, config: PretrainedConfig):
|
280 |
+
super().__init__(model_name_or_path, config)
|
281 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(model_name_or_path)
|
282 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(
|
283 |
+
model_name_or_path, torch_dtype=eval(config.model_dtype)
|
284 |
+
)
|
285 |
+
|
286 |
+
# Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information
|
287 |
+
self.image_processor.size["shortest_edge"] = self.scales[-1]
|
288 |
+
self.image_processor.crop_size["height"] = self.image_processor.crop_size[
|
289 |
+
"width"
|
290 |
+
] = self.scales[-1]
|
291 |
+
|
292 |
+
self.is_loaded = True
|
293 |
+
|
294 |
+
|
295 |
+
class IdentityMap(nn.Module):
|
296 |
+
def __init__(self):
|
297 |
+
super().__init__()
|
298 |
+
|
299 |
+
def forward(self, x, *args, **kwargs):
|
300 |
+
return x
|
301 |
+
|
302 |
+
@property
|
303 |
+
def config(self):
|
304 |
+
return {"mm_projector_type": "identity"}
|
305 |
+
|
306 |
+
|
307 |
+
class SimpleResBlock(nn.Module):
|
308 |
+
def __init__(self, channels):
|
309 |
+
super().__init__()
|
310 |
+
self.pre_norm = nn.LayerNorm(channels)
|
311 |
+
|
312 |
+
self.proj = nn.Sequential(
|
313 |
+
nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
|
314 |
+
)
|
315 |
+
|
316 |
+
def forward(self, x):
|
317 |
+
x = self.pre_norm(x)
|
318 |
+
return x + self.proj(x)
|
319 |
+
|
320 |
+
|
321 |
+
class DownSampleBlock(nn.Module):
|
322 |
+
def forward(self, x):
|
323 |
+
vit_embeds = x
|
324 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
325 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
326 |
+
vit_embeds = self.flat_square(vit_embeds)
|
327 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
328 |
+
return vit_embeds
|
329 |
+
|
330 |
+
def flat_square(self, x):
|
331 |
+
n, w, h, c = x.size()
|
332 |
+
if w % 2 == 1:
|
333 |
+
x = torch.concat(
|
334 |
+
[x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1
|
335 |
+
).contiguous()
|
336 |
+
n, w, h, c = x.size()
|
337 |
+
if h % 2 == 1:
|
338 |
+
x = torch.concat(
|
339 |
+
[x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2
|
340 |
+
).contiguous()
|
341 |
+
n, w, h, c = x.size()
|
342 |
+
x = x.view(n, w, int(h / 2), int(c * 2))
|
343 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
344 |
+
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
|
345 |
+
return x
|
346 |
+
|
347 |
+
|
348 |
+
class MultimodalProjectorConfig(PretrainedConfig):
|
349 |
+
model_type = "v2l_projector"
|
350 |
+
|
351 |
+
def __init__(self, mm_projector_type: str = None, **kwargs):
|
352 |
+
super().__init__()
|
353 |
+
self.mm_projector_type = mm_projector_type
|
354 |
+
|
355 |
+
|
356 |
+
class MultimodalProjector(PreTrainedModel):
|
357 |
+
config_class = MultimodalProjectorConfig
|
358 |
+
|
359 |
+
def __init__(
|
360 |
+
self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig
|
361 |
+
):
|
362 |
+
super().__init__(mm_projector_cfg)
|
363 |
+
mm_projector_type = mm_projector_cfg.mm_projector_type
|
364 |
+
if mm_projector_type == "identity":
|
365 |
+
self.layers = IdentityMap()
|
366 |
+
elif mm_projector_type == "linear":
|
367 |
+
self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
368 |
+
elif mm_projector_type == "mlp_downsample":
|
369 |
+
self.layers = nn.Sequential(
|
370 |
+
DownSampleBlock(),
|
371 |
+
nn.LayerNorm(config.mm_hidden_size * 4),
|
372 |
+
nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
|
373 |
+
nn.GELU(),
|
374 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
375 |
+
)
|
376 |
+
else:
|
377 |
+
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type)
|
378 |
+
if mlp_gelu_match:
|
379 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
380 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
381 |
+
for _ in range(1, mlp_depth):
|
382 |
+
modules.append(nn.GELU())
|
383 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
384 |
+
self.layers = nn.Sequential(*modules)
|
385 |
+
else:
|
386 |
+
raise ValueError(f"Unknown projector type: {mm_projector_type}")
|
387 |
+
|
388 |
+
def forward(self, x, *args, **kwargs):
|
389 |
+
return self.layers(x)
|
390 |
+
|
391 |
+
|
392 |
+
def build_mm_projector(
|
393 |
+
model_type_or_path: str, config: PretrainedConfig
|
394 |
+
) -> PreTrainedModel:
|
395 |
+
if model_type_or_path is None:
|
396 |
+
return None
|
397 |
+
|
398 |
+
## load from pretrained model
|
399 |
+
if config.resume_path:
|
400 |
+
assert os.path.exists(
|
401 |
+
model_type_or_path
|
402 |
+
), f"Resume mm projector path {model_type_or_path} does not exist!"
|
403 |
+
return MultimodalProjector.from_pretrained(
|
404 |
+
model_type_or_path, config, torch_dtype=eval(config.model_dtype)
|
405 |
+
)
|
406 |
+
## build from scratch
|
407 |
+
else:
|
408 |
+
mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
|
409 |
+
mm_projector = MultimodalProjector(mm_projector_cfg, config).to(
|
410 |
+
eval(config.model_dtype)
|
411 |
+
)
|
412 |
+
return mm_projector
|
413 |
+
|
414 |
+
|
415 |
+
def build_vision_tower(
|
416 |
+
model_name_or_path: str, config: PretrainedConfig
|
417 |
+
) -> PreTrainedModel:
|
418 |
+
## skip vision tower instantiation
|
419 |
+
if model_name_or_path is None:
|
420 |
+
return None
|
421 |
+
|
422 |
+
vision_tower_arch = None
|
423 |
+
if config.resume_path and "radio" not in model_name_or_path:
|
424 |
+
assert os.path.exists(
|
425 |
+
model_name_or_path
|
426 |
+
), f"Resume vision tower path {model_name_or_path} does not exist!"
|
427 |
+
vision_tower_cfg = AutoConfig.from_pretrained(
|
428 |
+
model_name_or_path, trust_remote_code=True
|
429 |
+
)
|
430 |
+
vision_tower_arch = vision_tower_cfg.architectures[0].lower()
|
431 |
+
vision_tower_name = (
|
432 |
+
vision_tower_arch if vision_tower_arch is not None else model_name_or_path
|
433 |
+
)
|
434 |
+
|
435 |
+
use_s2 = getattr(config, "s2", False)
|
436 |
+
|
437 |
+
if "intern" in vision_tower_name.lower():
|
438 |
+
if hasattr(config, "drop_path_rate"):
|
439 |
+
vision_tower = InternVisionTower(
|
440 |
+
model_name_or_path, config=config, drop_path_rate=config.drop_path_rate
|
441 |
+
)
|
442 |
+
else:
|
443 |
+
vision_tower = InternVisionTower(
|
444 |
+
model_name_or_path, config=config, drop_path_rate=0.0
|
445 |
+
)
|
446 |
+
elif "clip" in vision_tower_name:
|
447 |
+
if use_s2:
|
448 |
+
vision_tower = CLIPVisionTowerS2(model_name_or_path, config)
|
449 |
+
else:
|
450 |
+
vision_tower = CLIPVisionTower(model_name_or_path, config)
|
451 |
+
elif "siglip" in vision_tower_name:
|
452 |
+
if use_s2:
|
453 |
+
vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
|
454 |
+
else:
|
455 |
+
vision_tower = SiglipVisionTower(model_name_or_path, config)
|
456 |
+
else:
|
457 |
+
raise ValueError(f"Unknown vision tower: {model_name_or_path}")
|
458 |
+
|
459 |
+
config.mm_hidden_size = (
|
460 |
+
vision_tower.config.hidden_size if not use_s2 else vision_tower.hidden_size
|
461 |
+
)
|
462 |
+
return vision_tower
|
463 |
+
|
464 |
+
|
465 |
+
def has_tokenizer(repo_id_or_path: str) -> bool:
|
466 |
+
# Check if the tokenizer is in a local directory
|
467 |
+
if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
|
468 |
+
return True
|
469 |
+
|
470 |
+
# Check if the tokenizer is in a Hugging Face Hub repo
|
471 |
+
try:
|
472 |
+
return repo_exists(repo_id_or_path) and file_exists(
|
473 |
+
repo_id_or_path, "tokenizer_config.json"
|
474 |
+
)
|
475 |
+
except HFValidationError:
|
476 |
+
return False
|
477 |
+
|
478 |
+
|
479 |
+
def context_length_extension(config):
|
480 |
+
orig_ctx_len = getattr(config, "max_position_embeddings", None)
|
481 |
+
model_max_length = getattr(config, "model_max_length", None)
|
482 |
+
if orig_ctx_len and model_max_length > orig_ctx_len:
|
483 |
+
print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
|
484 |
+
scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
|
485 |
+
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
|
486 |
+
return config
|
487 |
+
|
488 |
+
|
489 |
+
def build_llm_and_tokenizer(
|
490 |
+
model_name_or_path: str,
|
491 |
+
config: PretrainedConfig,
|
492 |
+
attn_implementation=None,
|
493 |
+
model_max_length=None,
|
494 |
+
*args,
|
495 |
+
**kwargs,
|
496 |
+
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
|
497 |
+
llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
|
498 |
+
llm_cfg._attn_implementation = attn_implementation
|
499 |
+
llm_cfg.model_max_length = model_max_length
|
500 |
+
if model_max_length is not None:
|
501 |
+
context_length_extension(llm_cfg)
|
502 |
+
|
503 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
504 |
+
model_name_or_path,
|
505 |
+
config=llm_cfg,
|
506 |
+
torch_dtype=eval(config.model_dtype),
|
507 |
+
*args,
|
508 |
+
**kwargs,
|
509 |
+
)
|
510 |
+
|
511 |
+
# Locate the tokenizer.
|
512 |
+
llm_path = model_name_or_path
|
513 |
+
if not has_tokenizer(llm_path):
|
514 |
+
llm_path = osp.join(llm_path, "llm")
|
515 |
+
if not has_tokenizer(llm_path):
|
516 |
+
raise ValueError(f"Cannot find tokenizer in {llm_path}.")
|
517 |
+
|
518 |
+
# TODO(ligeng): use LLM class to judge to better compability.
|
519 |
+
try:
|
520 |
+
llm_arch = getattr(llm_cfg, "architectures")[0].lower()
|
521 |
+
except BaseException:
|
522 |
+
warnings.warn(
|
523 |
+
f'Cannot find LLM architecture, please check the "config.json" under "{llm_path}".'
|
524 |
+
)
|
525 |
+
|
526 |
+
if "mpt" in llm_arch:
|
527 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
528 |
+
llm_path,
|
529 |
+
model_max_length=llm_cfg.model_max_length,
|
530 |
+
padding_side="right",
|
531 |
+
)
|
532 |
+
elif "yi" in llm_path or (
|
533 |
+
getattr(llm_cfg, "num_hidden_layers", -1) == 60
|
534 |
+
and getattr(llm_cfg, "num_attention_heads", -1) == 56
|
535 |
+
):
|
536 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
537 |
+
llm_path,
|
538 |
+
model_max_length=llm_cfg.model_max_length,
|
539 |
+
padding_side="right",
|
540 |
+
use_fast=False,
|
541 |
+
)
|
542 |
+
else:
|
543 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
544 |
+
llm_path,
|
545 |
+
model_max_length=llm_cfg.model_max_length,
|
546 |
+
padding_side="right",
|
547 |
+
use_fast=False,
|
548 |
+
legacy=False,
|
549 |
+
)
|
550 |
+
|
551 |
+
# TODO(ligeng): is this necessary for llava?
|
552 |
+
config.hidden_size = llm.config.hidden_size
|
553 |
+
return llm, tokenizer
|
554 |
+
|
555 |
+
|
556 |
+
def get_model_config(config):
|
557 |
+
default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
|
558 |
+
|
559 |
+
if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
|
560 |
+
root_path = config._name_or_path
|
561 |
+
else:
|
562 |
+
root_path = config.resume_path
|
563 |
+
|
564 |
+
# download from huggingface
|
565 |
+
if root_path is not None and not osp.exists(root_path):
|
566 |
+
try:
|
567 |
+
valid_hf_repo = repo_exists(root_path)
|
568 |
+
except HFValidationError as e:
|
569 |
+
valid_hf_repo = False
|
570 |
+
if valid_hf_repo:
|
571 |
+
root_path = snapshot_download(root_path)
|
572 |
+
|
573 |
+
return_list = []
|
574 |
+
for key in default_keys:
|
575 |
+
cfg = getattr(config, key, None)
|
576 |
+
if isinstance(cfg, dict):
|
577 |
+
try:
|
578 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
579 |
+
except:
|
580 |
+
raise ValueError(f"Cannot find resume path in config for {key}!")
|
581 |
+
elif isinstance(cfg, PretrainedConfig):
|
582 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
583 |
+
elif isinstance(cfg, str):
|
584 |
+
return_list.append(cfg)
|
585 |
+
|
586 |
+
return return_list
|
587 |
+
|
588 |
+
|
589 |
+
def is_mm_model(model_path):
|
590 |
+
"""
|
591 |
+
Check if the model at the given path is a visual language model.
|
592 |
+
|
593 |
+
Args:
|
594 |
+
model_path (str): The path to the model.
|
595 |
+
|
596 |
+
Returns:
|
597 |
+
bool: True if the model is an MM model, False otherwise.
|
598 |
+
"""
|
599 |
+
config = AutoConfig.from_pretrained(model_path)
|
600 |
+
architectures = config.architectures
|
601 |
+
for architecture in architectures:
|
602 |
+
if "llava" in architecture.lower():
|
603 |
+
return True
|
604 |
+
return False
|
605 |
+
|
606 |
+
|
607 |
+
def auto_upgrade(config):
|
608 |
+
cfg = AutoConfig.from_pretrained(config)
|
609 |
+
if "llava" in config and "llava" not in cfg.model_type:
|
610 |
+
assert cfg.model_type == "llama"
|
611 |
+
print(
|
612 |
+
"You are using newer LLaVA code base, while the checkpoint of v0 is from older code base."
|
613 |
+
)
|
614 |
+
print(
|
615 |
+
"You must upgrade the checkpoint to the new code base (this can be done automatically)."
|
616 |
+
)
|
617 |
+
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
|
618 |
+
if confirm.lower() in ["y", "yes"]:
|
619 |
+
print("Upgrading checkpoint...")
|
620 |
+
assert len(cfg.architectures) == 1
|
621 |
+
setattr(cfg.__class__, "model_type", "llava")
|
622 |
+
cfg.architectures[0] = "LlavaLlamaForCausalLM"
|
623 |
+
cfg.save_pretrained(config)
|
624 |
+
print("Checkpoint upgraded.")
|
625 |
+
else:
|
626 |
+
print("Checkpoint upgrade aborted.")
|
627 |
+
exit(1)
|
628 |
+
|
629 |
+
|
630 |
+
def get_pg_manager():
|
631 |
+
return None
|
632 |
+
|
633 |
+
|
634 |
+
# TODO decide whether should we use metaclass
|
635 |
+
class LlavaMetaModel(ABC):
|
636 |
+
def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs):
|
637 |
+
# TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation.
|
638 |
+
if (
|
639 |
+
hasattr(self, "llm")
|
640 |
+
or hasattr(self, "vision_tower")
|
641 |
+
or hasattr(self, "mm_projector")
|
642 |
+
):
|
643 |
+
# already initialized, skipped
|
644 |
+
return
|
645 |
+
|
646 |
+
model_dtype = getattr(config, "model_dtype", "torch.float16")
|
647 |
+
if not hasattr(config, "model_dtype"):
|
648 |
+
warnings.warn(
|
649 |
+
"model_dtype not found in config, defaulting to torch.float16."
|
650 |
+
)
|
651 |
+
config.model_dtype = model_dtype
|
652 |
+
|
653 |
+
cfgs = get_model_config(config)
|
654 |
+
if len(cfgs) == 3:
|
655 |
+
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
|
656 |
+
else:
|
657 |
+
raise ValueError(
|
658 |
+
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
|
659 |
+
)
|
660 |
+
|
661 |
+
# print("Before init in Config")
|
662 |
+
# if hasattr(config, "deepspeed") and "mics" in config.deepspeed:
|
663 |
+
# print("Using MiCS_Init")
|
664 |
+
# import deepspeed
|
665 |
+
# with deepspeed.zero.MiCS_Init():
|
666 |
+
# self.llm, self.tokenizer = build_llm_and_tokenizer(llm_cfg, config, *args, **kwargs)
|
667 |
+
# self.vision_tower = build_vision_tower(vision_tower_cfg, config)
|
668 |
+
# self.mm_projector = build_mm_projector(mm_projector_cfg, config)
|
669 |
+
# else:
|
670 |
+
self.llm, self.tokenizer = build_llm_and_tokenizer(
|
671 |
+
llm_cfg, config, *args, **kwargs
|
672 |
+
)
|
673 |
+
self.vision_tower = build_vision_tower(vision_tower_cfg, config)
|
674 |
+
self.mm_projector = build_mm_projector(mm_projector_cfg, config)
|
675 |
+
|
676 |
+
self.post_config()
|
677 |
+
self.is_loaded = True
|
678 |
+
|
679 |
+
assert (
|
680 |
+
self.llm is not None
|
681 |
+
or self.vision_tower is not None
|
682 |
+
or self.mm_projector is not None
|
683 |
+
), "At least one of the components must be instantiated."
|
684 |
+
|
685 |
+
@classmethod
|
686 |
+
def load_from_config(cls, model_path_or_config, *args, **kwargs):
|
687 |
+
pass
|
688 |
+
|
689 |
+
## FIXME we will use this function to load model in the future
|
690 |
+
@classmethod
|
691 |
+
def load_pretrained(cls, model_path_or_config, *args, **kwargs):
|
692 |
+
kwargs.pop("config", None)
|
693 |
+
|
694 |
+
if isinstance(model_path_or_config, str):
|
695 |
+
config = AutoConfig.from_pretrained(model_path_or_config)
|
696 |
+
elif isinstance(model_path_or_config, LlavaConfig):
|
697 |
+
config = model_path_or_config
|
698 |
+
else:
|
699 |
+
raise NotImplementedError(
|
700 |
+
f"wrong type, {type(model_path_or_config)} \
|
701 |
+
{isinstance(model_path_or_config, LlavaConfig)}"
|
702 |
+
)
|
703 |
+
|
704 |
+
model_dtype = getattr(config, "model_dtype", "torch.float16")
|
705 |
+
if not hasattr(config, "model_dtype"):
|
706 |
+
warnings.warn(
|
707 |
+
"model_dtype not found in config, defaulting to torch.float16."
|
708 |
+
)
|
709 |
+
config.model_dtype = model_dtype
|
710 |
+
|
711 |
+
cfgs = get_model_config(config)
|
712 |
+
if len(cfgs) == 3:
|
713 |
+
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
|
714 |
+
else:
|
715 |
+
raise ValueError(
|
716 |
+
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
|
717 |
+
)
|
718 |
+
|
719 |
+
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained")
|
720 |
+
init_context = [
|
721 |
+
no_init_weights(_enable=True),
|
722 |
+
]
|
723 |
+
# print("Before Init Context")
|
724 |
+
# if hasattr(config, "deepspeed") and "mics" in config.deepspeed:
|
725 |
+
# print("Using MiCS_Init")
|
726 |
+
# import deepspeed
|
727 |
+
# init_context.append(deepspeed.zero.MiCS_Init(config_dict_or_path=config.deepspeed))
|
728 |
+
with ContextManagers(init_context):
|
729 |
+
vlm = cls(config, *args, **kwargs)
|
730 |
+
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained finish")
|
731 |
+
|
732 |
+
if (
|
733 |
+
hasattr(vlm, "llm")
|
734 |
+
or hasattr(vlm, "vision_tower")
|
735 |
+
or hasattr(vlm, "mm_projector")
|
736 |
+
):
|
737 |
+
if vlm.is_loaded:
|
738 |
+
return vlm
|
739 |
+
|
740 |
+
vlm.llm, vlm.tokenizer = build_llm_and_tokenizer(
|
741 |
+
llm_cfg, config, *args, **kwargs
|
742 |
+
)
|
743 |
+
vlm.vision_tower = build_vision_tower(vision_tower_cfg, config)
|
744 |
+
vlm.mm_projector = build_mm_projector(mm_projector_cfg, config)
|
745 |
+
|
746 |
+
self.post_config()
|
747 |
+
self.is_loaded = True
|
748 |
+
|
749 |
+
# FIXME(ligeng, yunhao): llm should never be none here.
|
750 |
+
assert (
|
751 |
+
vlm.llm is not None
|
752 |
+
or vlm.vision_tower is not None
|
753 |
+
or vlm.mm_projector is not None
|
754 |
+
), "At least one of the components must be instantiated."
|
755 |
+
return vlm
|
756 |
+
|
757 |
+
## FIXME we will use this function to save the model in the future
|
758 |
+
def save_pretrained(self, output_dir, state_dict=None):
|
759 |
+
if state_dict is None:
|
760 |
+
# other wise fetch from deepspeed
|
761 |
+
# state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
|
762 |
+
state_dict = self.state_dict()
|
763 |
+
|
764 |
+
if getattr(self, "tokenizer", None):
|
765 |
+
self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))
|
766 |
+
|
767 |
+
if self.get_llm():
|
768 |
+
print(f"saving llm to {osp.join(output_dir, 'llm')}")
|
769 |
+
self.llm.config._name_or_path = osp.join(output_dir, "llm")
|
770 |
+
llm_state_dict = OrderedDict(
|
771 |
+
{k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k}
|
772 |
+
)
|
773 |
+
self.llm.save_pretrained(
|
774 |
+
os.path.join(output_dir, "llm"), state_dict=llm_state_dict
|
775 |
+
)
|
776 |
+
self.config.llm_cfg = self.llm.config
|
777 |
+
|
778 |
+
if self.get_vision_tower():
|
779 |
+
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
|
780 |
+
self.vision_tower.config._name_or_path = osp.join(
|
781 |
+
output_dir, "vision_tower"
|
782 |
+
)
|
783 |
+
vision_tower_state_dict = OrderedDict(
|
784 |
+
{
|
785 |
+
k.split("vision_tower.vision_tower.")[-1]: v
|
786 |
+
for k, v in state_dict.items()
|
787 |
+
if "vision_tower" in k
|
788 |
+
}
|
789 |
+
)
|
790 |
+
self.vision_tower.vision_tower.save_pretrained(
|
791 |
+
os.path.join(output_dir, "vision_tower"),
|
792 |
+
state_dict=vision_tower_state_dict,
|
793 |
+
)
|
794 |
+
self.vision_tower.image_processor.save_pretrained(
|
795 |
+
os.path.join(output_dir, "vision_tower")
|
796 |
+
)
|
797 |
+
self.config.vision_tower_cfg = self.vision_tower.config
|
798 |
+
if hasattr(self.config.vision_tower_cfg, "auto_map"):
|
799 |
+
if "radio" not in self.get_vision_tower().__class__.__name__.lower():
|
800 |
+
delattr(self.config.vision_tower_cfg, "auto_map")
|
801 |
+
|
802 |
+
if self.get_mm_projector():
|
803 |
+
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
|
804 |
+
self.mm_projector.config._name_or_path = osp.join(
|
805 |
+
output_dir, "mm_projector"
|
806 |
+
)
|
807 |
+
mm_projector_state_dict = OrderedDict(
|
808 |
+
{
|
809 |
+
k.split("mm_projector.")[-1]: v
|
810 |
+
for k, v in state_dict.items()
|
811 |
+
if "mm_projector" in k
|
812 |
+
}
|
813 |
+
)
|
814 |
+
self.mm_projector.save_pretrained(
|
815 |
+
os.path.join(output_dir, "mm_projector"),
|
816 |
+
state_dict=mm_projector_state_dict,
|
817 |
+
)
|
818 |
+
self.config.mm_projector_cfg = self.mm_projector.config
|
819 |
+
## update and save top-level config
|
820 |
+
self.config._name_or_path = output_dir
|
821 |
+
self.config.architectures = [self.__class__.__name__]
|
822 |
+
self.config.save_pretrained(output_dir)
|
823 |
+
|
824 |
+
def get_llm(self):
|
825 |
+
llm = getattr(self, "llm", None)
|
826 |
+
if type(llm) is list:
|
827 |
+
llm = llm[0]
|
828 |
+
return llm
|
829 |
+
|
830 |
+
def get_lm_head(self):
|
831 |
+
lm_head = getattr(self.get_llm(), "lm_head", None)
|
832 |
+
return lm_head
|
833 |
+
|
834 |
+
def get_vision_tower(self):
|
835 |
+
vision_tower = getattr(self, "vision_tower", None)
|
836 |
+
if type(vision_tower) is list:
|
837 |
+
vision_tower = vision_tower[0]
|
838 |
+
return vision_tower
|
839 |
+
|
840 |
+
def get_mm_projector(self):
|
841 |
+
mm_projector = getattr(self, "mm_projector", None)
|
842 |
+
if type(mm_projector) is list:
|
843 |
+
mm_projector = mm_projector[0]
|
844 |
+
return mm_projector
|
845 |
+
|
846 |
+
def post_config(self):
|
847 |
+
self.training = self.get_llm().training
|
848 |
+
## configuration
|
849 |
+
if getattr(self.config, "llm_cfg", None) is None:
|
850 |
+
self.config.llm_cfg = self.llm.config
|
851 |
+
if getattr(self.config, "vision_tower_cfg", None) is None:
|
852 |
+
self.config.vision_tower_cfg = self.vision_tower.config
|
853 |
+
if getattr(self.config, "mm_projector_cfg", None) is None:
|
854 |
+
self.config.mm_projector_cfg = self.mm_projector.config
|
855 |
+
|
856 |
+
def freezed_module_patch(self):
|
857 |
+
"""
|
858 |
+
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
|
859 |
+
"""
|
860 |
+
if self.training:
|
861 |
+
if self.get_llm() and not getattr(
|
862 |
+
self.config, "tune_language_model", False
|
863 |
+
):
|
864 |
+
pass
|
865 |
+
# logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
|
866 |
+
if self.get_vision_tower() and not getattr(
|
867 |
+
self.config, "tune_vision_tower", False
|
868 |
+
):
|
869 |
+
self.get_vision_tower().eval()
|
870 |
+
if self.get_mm_projector() and not getattr(
|
871 |
+
self.config, "tune_mm_projector", False
|
872 |
+
):
|
873 |
+
self.get_mm_projector().eval()
|
874 |
+
|
875 |
+
def encode_images(self, images):
|
876 |
+
image_features = self.get_vision_tower()(images)
|
877 |
+
image_features = self.get_mm_projector()(image_features)
|
878 |
+
return image_features
|
879 |
+
|
880 |
+
## @yunhao: is there a better way to handle function call and attributes for llm?
|
881 |
+
## support beam search
|
882 |
+
def _temporary_reorder_cache(self, past_key_values, sorted_idx):
|
883 |
+
return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx)
|
884 |
+
|
885 |
+
def get_input_embeddings(self):
|
886 |
+
return self.get_llm().get_input_embeddings()
|
887 |
+
|
888 |
+
def get_output_embeddings(self):
|
889 |
+
return self.get_llm().get_output_embeddings()
|
890 |
+
|
891 |
+
def resize_token_embeddings(self, embed_size):
|
892 |
+
self.get_llm().resize_token_embeddings(embed_size)
|
893 |
+
|
894 |
+
|
895 |
+
class LlavaMetaForCausalLM(ABC):
|
896 |
+
"""This class is originally implemented by the LLaVA team and
|
897 |
+
modified by Haotian Tang and Jason Lu based on Ji Lin's implementation
|
898 |
+
to support multiple images and input packing."""
|
899 |
+
|
900 |
+
## TODO move the forward function here if there is no need to override it
|
901 |
+
def prepare_inputs_labels_for_multimodal(
|
902 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels, images
|
903 |
+
):
|
904 |
+
# Handle sequence parallelism
|
905 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
906 |
+
if PROCESS_GROUP_MANAGER is None:
|
907 |
+
sp_degree = -1
|
908 |
+
sp_rank = -1
|
909 |
+
else:
|
910 |
+
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
|
911 |
+
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
|
912 |
+
|
913 |
+
vision_tower = self.get_vision_tower()
|
914 |
+
if (
|
915 |
+
vision_tower is None
|
916 |
+
or images is None
|
917 |
+
or (input_ids.shape[1] == 1 and PROCESS_GROUP_MANAGER is None)
|
918 |
+
):
|
919 |
+
if (
|
920 |
+
past_key_values is not None
|
921 |
+
and vision_tower is not None
|
922 |
+
and images is not None
|
923 |
+
and input_ids.shape[1] == 1
|
924 |
+
):
|
925 |
+
target_shape = past_key_values[-1][-1].shape[-2] + 1
|
926 |
+
attention_mask = torch.cat(
|
927 |
+
(
|
928 |
+
attention_mask,
|
929 |
+
torch.ones(
|
930 |
+
(
|
931 |
+
attention_mask.shape[0],
|
932 |
+
target_shape - attention_mask.shape[1],
|
933 |
+
),
|
934 |
+
dtype=attention_mask.dtype,
|
935 |
+
device=attention_mask.device,
|
936 |
+
),
|
937 |
+
),
|
938 |
+
dim=1,
|
939 |
+
)
|
940 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
941 |
+
return (
|
942 |
+
input_ids,
|
943 |
+
position_ids,
|
944 |
+
attention_mask,
|
945 |
+
past_key_values,
|
946 |
+
None,
|
947 |
+
labels,
|
948 |
+
)
|
949 |
+
# handle different image dtypes for packing
|
950 |
+
if type(images) is list:
|
951 |
+
images = torch.cat(images, dim=0)
|
952 |
+
elif images.ndim == 5: # batch_size x seq_len x image_channels
|
953 |
+
images = images.flatten(0, 1)
|
954 |
+
image_features = self.encode_images(images).to(self.device)
|
955 |
+
# Note (kentang-mit@): image start / end is not implemented here to support pretraining.
|
956 |
+
if getattr(self.config, "turn_mm_projector", False) and getattr(
|
957 |
+
self.config, "mm_use_im_start_end", False
|
958 |
+
):
|
959 |
+
raise NotImplementedError
|
960 |
+
|
961 |
+
# Let's just add dummy tensors if they do not exist,
|
962 |
+
# it is a headache to deal with None all the time.
|
963 |
+
# But it is not ideal, and if you have a better idea,
|
964 |
+
# please open an issue / submit a PR, thanks.
|
965 |
+
_labels = labels
|
966 |
+
_position_ids = position_ids
|
967 |
+
_attention_mask = attention_mask
|
968 |
+
if attention_mask is None:
|
969 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
970 |
+
else:
|
971 |
+
attention_mask = attention_mask.bool()
|
972 |
+
if position_ids is None:
|
973 |
+
position_ids = torch.arange(
|
974 |
+
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
|
975 |
+
)
|
976 |
+
if labels is None:
|
977 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
978 |
+
|
979 |
+
# remove the padding using attention_mask
|
980 |
+
input_ids_copy = input_ids.clone()
|
981 |
+
# kentang-mit@: Otherwise tokenizer out of bounds. Embeddings of image tokens will not be used.
|
982 |
+
input_ids_copy[input_ids_copy == IMAGE_TOKEN_INDEX] = 0
|
983 |
+
input_embeds = self.llm.model.embed_tokens(input_ids_copy)
|
984 |
+
|
985 |
+
input_ids = [
|
986 |
+
cur_input_ids[cur_attention_mask]
|
987 |
+
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
|
988 |
+
]
|
989 |
+
input_embeds_1 = [
|
990 |
+
cur_input_embeds[cur_attention_mask]
|
991 |
+
for cur_input_embeds, cur_attention_mask in zip(
|
992 |
+
input_embeds, attention_mask
|
993 |
+
)
|
994 |
+
]
|
995 |
+
labels = [
|
996 |
+
cur_labels[cur_attention_mask]
|
997 |
+
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
|
998 |
+
]
|
999 |
+
|
1000 |
+
new_input_embeds = []
|
1001 |
+
new_labels = []
|
1002 |
+
cur_image_idx = 0
|
1003 |
+
|
1004 |
+
# kentang-mit@: If some part of the model is executed in the loop, the the loop length needs to be a constant.
|
1005 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
1006 |
+
cur_input_ids = input_ids[batch_idx]
|
1007 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
1008 |
+
if num_images == 0:
|
1009 |
+
cur_image_features = image_features[0]
|
1010 |
+
cur_input_embeds_1 = input_embeds_1[batch_idx]
|
1011 |
+
cur_input_embeds = torch.cat(
|
1012 |
+
[cur_input_embeds_1, cur_image_features[0:0]], dim=0
|
1013 |
+
)
|
1014 |
+
new_input_embeds.append(cur_input_embeds)
|
1015 |
+
new_labels.append(labels[batch_idx])
|
1016 |
+
# kenang-mit@: we do not have placeholdr image for text-only data now.
|
1017 |
+
continue
|
1018 |
+
|
1019 |
+
cur_input_embeds = input_embeds_1[batch_idx]
|
1020 |
+
image_token_indices = (
|
1021 |
+
[-1]
|
1022 |
+
+ torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
|
1023 |
+
+ [cur_input_ids.shape[0]]
|
1024 |
+
)
|
1025 |
+
cur_input_ids_noim = []
|
1026 |
+
cur_labels = labels[batch_idx]
|
1027 |
+
cur_labels_noim = []
|
1028 |
+
cur_input_embeds_no_im = []
|
1029 |
+
for i in range(len(image_token_indices) - 1):
|
1030 |
+
if (
|
1031 |
+
sp_degree > 1 and i == 0 and sp_rank != 0
|
1032 |
+
): # Handle sequence parallelism
|
1033 |
+
cur_input_ids_noim.append(cur_input_ids[0:0])
|
1034 |
+
cur_labels_noim.append(cur_labels[0:0])
|
1035 |
+
cur_input_embeds_no_im.append(cur_input_embeds[0:0])
|
1036 |
+
continue
|
1037 |
+
cur_input_ids_noim.append(
|
1038 |
+
cur_input_ids[
|
1039 |
+
image_token_indices[i] + 1 : image_token_indices[i + 1]
|
1040 |
+
]
|
1041 |
+
)
|
1042 |
+
cur_labels_noim.append(
|
1043 |
+
cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]
|
1044 |
+
)
|
1045 |
+
cur_input_embeds_no_im.append(
|
1046 |
+
cur_input_embeds[
|
1047 |
+
image_token_indices[i] + 1 : image_token_indices[i + 1]
|
1048 |
+
]
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
cur_new_input_embeds = []
|
1052 |
+
cur_new_labels = []
|
1053 |
+
for i in range(num_images + 1):
|
1054 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
1055 |
+
cur_new_labels.append(cur_labels_noim[i])
|
1056 |
+
if i < num_images:
|
1057 |
+
cur_image_features = image_features[cur_image_idx]
|
1058 |
+
cur_image_idx += 1
|
1059 |
+
cur_new_input_embeds.append(cur_image_features)
|
1060 |
+
cur_new_labels.append(
|
1061 |
+
torch.full(
|
1062 |
+
(cur_image_features.shape[0],),
|
1063 |
+
IGNORE_INDEX,
|
1064 |
+
device=cur_labels.device,
|
1065 |
+
dtype=cur_labels.dtype,
|
1066 |
+
)
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
1070 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
1071 |
+
|
1072 |
+
new_input_embeds.append(cur_new_input_embeds)
|
1073 |
+
new_labels.append(cur_new_labels)
|
1074 |
+
|
1075 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
1076 |
+
tokenizer_model_max_length = getattr(
|
1077 |
+
self.llm.config, "tokenizer_model_max_length", None
|
1078 |
+
)
|
1079 |
+
if tokenizer_model_max_length is not None:
|
1080 |
+
if any(len(x) > tokenizer_model_max_length for x in new_input_embeds):
|
1081 |
+
warnings.warn("Inputs truncated!")
|
1082 |
+
new_input_embeds = [
|
1083 |
+
x[:tokenizer_model_max_length] for x in new_input_embeds
|
1084 |
+
]
|
1085 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
1086 |
+
# Combine them
|
1087 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
1088 |
+
# max_len = tokenizer_model_max_length
|
1089 |
+
# print("Warning: using max_len as tokenizer_model_max_length")
|
1090 |
+
batch_size = len(new_input_embeds)
|
1091 |
+
|
1092 |
+
new_input_embeds_padded = []
|
1093 |
+
new_labels_padded = torch.full(
|
1094 |
+
(batch_size, max_len),
|
1095 |
+
IGNORE_INDEX,
|
1096 |
+
dtype=new_labels[0].dtype,
|
1097 |
+
device=new_labels[0].device,
|
1098 |
+
)
|
1099 |
+
attention_mask = torch.zeros(
|
1100 |
+
(batch_size, max_len),
|
1101 |
+
dtype=attention_mask.dtype,
|
1102 |
+
device=attention_mask.device,
|
1103 |
+
)
|
1104 |
+
position_ids = torch.zeros(
|
1105 |
+
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(
|
1109 |
+
zip(new_input_embeds, new_labels)
|
1110 |
+
):
|
1111 |
+
cur_len = cur_new_embed.shape[0]
|
1112 |
+
if getattr(self.llm.config, "tokenizer_padding_side", "right") == "left":
|
1113 |
+
new_input_embeds_padded.append(
|
1114 |
+
torch.cat(
|
1115 |
+
(
|
1116 |
+
torch.zeros(
|
1117 |
+
(max_len - cur_len, cur_new_embed.shape[1]),
|
1118 |
+
dtype=cur_new_embed.dtype,
|
1119 |
+
device=cur_new_embed.device,
|
1120 |
+
),
|
1121 |
+
cur_new_embed,
|
1122 |
+
),
|
1123 |
+
dim=0,
|
1124 |
+
)
|
1125 |
+
)
|
1126 |
+
if cur_len > 0:
|
1127 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
1128 |
+
attention_mask[i, -cur_len:] = True
|
1129 |
+
position_ids[i, -cur_len:] = torch.arange(
|
1130 |
+
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
|
1131 |
+
)
|
1132 |
+
else:
|
1133 |
+
new_input_embeds_padded.append(
|
1134 |
+
torch.cat(
|
1135 |
+
(
|
1136 |
+
cur_new_embed,
|
1137 |
+
torch.zeros(
|
1138 |
+
(max_len - cur_len, cur_new_embed.shape[1]),
|
1139 |
+
dtype=cur_new_embed.dtype,
|
1140 |
+
device=cur_new_embed.device,
|
1141 |
+
),
|
1142 |
+
),
|
1143 |
+
dim=0,
|
1144 |
+
)
|
1145 |
+
)
|
1146 |
+
if cur_len > 0:
|
1147 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
1148 |
+
attention_mask[i, :cur_len] = True
|
1149 |
+
position_ids[i, :cur_len] = torch.arange(
|
1150 |
+
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
1154 |
+
|
1155 |
+
# if sp_degree > 1: # Handle sequence parallelism
|
1156 |
+
# if sp_rank not in self.global_seq_len:
|
1157 |
+
# self.global_seq_len[sp_rank] = position_ids.shape[-1]
|
1158 |
+
# else:
|
1159 |
+
# assert self.global_seq_len[sp_rank] == position_ids.shape[-1]
|
1160 |
+
|
1161 |
+
if _labels is None:
|
1162 |
+
new_labels = None
|
1163 |
+
else:
|
1164 |
+
new_labels = new_labels_padded
|
1165 |
+
|
1166 |
+
if _attention_mask is None:
|
1167 |
+
attention_mask = None
|
1168 |
+
else:
|
1169 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
1170 |
+
|
1171 |
+
if _position_ids is None:
|
1172 |
+
position_ids = None
|
1173 |
+
|
1174 |
+
# We will not use packing here when sequence parallelism is enabled.
|
1175 |
+
if PROCESS_GROUP_MANAGER is not None:
|
1176 |
+
return (
|
1177 |
+
None,
|
1178 |
+
_position_ids,
|
1179 |
+
attention_mask,
|
1180 |
+
past_key_values,
|
1181 |
+
new_input_embeds,
|
1182 |
+
new_labels,
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
return (
|
1186 |
+
None,
|
1187 |
+
position_ids,
|
1188 |
+
attention_mask,
|
1189 |
+
past_key_values,
|
1190 |
+
new_input_embeds,
|
1191 |
+
new_labels,
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
def repack_multimodal_data(
|
1195 |
+
self,
|
1196 |
+
input_ids,
|
1197 |
+
position_ids,
|
1198 |
+
attention_mask,
|
1199 |
+
past_key_values,
|
1200 |
+
inputs_embeds,
|
1201 |
+
labels,
|
1202 |
+
):
|
1203 |
+
# Handle sequence parallelism
|
1204 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
1205 |
+
# if PROCESS_GROUP_MANAGER is None:
|
1206 |
+
# sp_degree = -1
|
1207 |
+
# sp_rank = -1
|
1208 |
+
# else:
|
1209 |
+
# sp_degree = PROCESS_GROUP_MANAGER.sp_degree
|
1210 |
+
# sp_rank = PROCESS_GROUP_MANAGER.sp_rank
|
1211 |
+
|
1212 |
+
# We will not use packing here when sequence parallelism is enabled.
|
1213 |
+
# However, we do resharding here to ensure the sequence length is the same across all ranks.
|
1214 |
+
if PROCESS_GROUP_MANAGER is not None:
|
1215 |
+
sp_degree = PROCESS_GROUP_MANAGER.sp_degree
|
1216 |
+
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
|
1217 |
+
sp_group = PROCESS_GROUP_MANAGER.ulysses_pg
|
1218 |
+
bs, shard_seqlen = position_ids.shape
|
1219 |
+
ulysess_seq_len = [
|
1220 |
+
torch.zeros(1, dtype=torch.int64, device=position_ids.device)
|
1221 |
+
for _ in range(sp_degree)
|
1222 |
+
]
|
1223 |
+
dist.all_gather(
|
1224 |
+
ulysess_seq_len,
|
1225 |
+
torch.tensor(shard_seqlen, device=position_ids.device),
|
1226 |
+
group=sp_group,
|
1227 |
+
)
|
1228 |
+
# global_seq_len = torch.sum(torch.cat(ulysess_seq_len, dim=0)).item()
|
1229 |
+
|
1230 |
+
# Gather attention_mask and reshard it evenly
|
1231 |
+
attention_mask_list = [
|
1232 |
+
torch.zeros(
|
1233 |
+
(bs, ulysess_seq_len[i]),
|
1234 |
+
dtype=attention_mask.dtype,
|
1235 |
+
device=attention_mask.device,
|
1236 |
+
)
|
1237 |
+
for i in range(sp_degree)
|
1238 |
+
]
|
1239 |
+
dist.all_gather(attention_mask_list, attention_mask, group=sp_group)
|
1240 |
+
effective_seqlen_list = [
|
1241 |
+
attention_mask_list[i].sum(dim=-1) for i in range(sp_degree)
|
1242 |
+
]
|
1243 |
+
effective_seqlen = torch.stack(effective_seqlen_list, dim=-1)
|
1244 |
+
effective_seqlen_batch_list = torch.unbind(effective_seqlen, dim=0)
|
1245 |
+
|
1246 |
+
global_attention_mask_list = []
|
1247 |
+
for i in range(bs):
|
1248 |
+
global_attention_mask_batch_list = []
|
1249 |
+
for j in range(sp_degree):
|
1250 |
+
global_attention_mask_batch_list.append(
|
1251 |
+
attention_mask_list[j][i, : effective_seqlen_batch_list[i][j]]
|
1252 |
+
)
|
1253 |
+
global_attention_mask_list.append(
|
1254 |
+
torch.cat(global_attention_mask_batch_list, dim=0)
|
1255 |
+
)
|
1256 |
+
global_attention_mask = torch.nn.utils.rnn.pad_sequence(
|
1257 |
+
global_attention_mask_list, batch_first=True, padding_value=False
|
1258 |
+
)
|
1259 |
+
|
1260 |
+
# Hyperparameters for sequence parallelism resharding
|
1261 |
+
global_seq_len = global_attention_mask.shape[-1]
|
1262 |
+
seq_len_sharded = global_seq_len // sp_degree
|
1263 |
+
start_idx_reshard = seq_len_sharded * sp_rank
|
1264 |
+
end_idx_reshard = (
|
1265 |
+
start_idx_reshard + seq_len_sharded
|
1266 |
+
if sp_rank < sp_degree - 1
|
1267 |
+
else global_seq_len
|
1268 |
+
)
|
1269 |
+
# if sp_rank == 0:
|
1270 |
+
# start_idx = 0
|
1271 |
+
# else:
|
1272 |
+
# start_idx = torch.sum(torch.cat(ulysess_seq_len[:sp_rank], dim=0)).item()
|
1273 |
+
|
1274 |
+
new_attention_mask = torch.narrow(
|
1275 |
+
global_attention_mask,
|
1276 |
+
1,
|
1277 |
+
start_idx_reshard,
|
1278 |
+
end_idx_reshard - start_idx_reshard,
|
1279 |
+
)
|
1280 |
+
|
1281 |
+
# Gather position_ids and reshard it evenly
|
1282 |
+
position_ids_list = [
|
1283 |
+
torch.zeros(
|
1284 |
+
(bs, ulysess_seq_len[i]),
|
1285 |
+
dtype=position_ids.dtype,
|
1286 |
+
device=position_ids.device,
|
1287 |
+
)
|
1288 |
+
for i in range(sp_degree)
|
1289 |
+
]
|
1290 |
+
dist.all_gather(position_ids_list, position_ids, group=sp_group)
|
1291 |
+
global_position_ids_list = []
|
1292 |
+
for i in range(bs):
|
1293 |
+
global_position_ids_batch_list = []
|
1294 |
+
for j in range(sp_degree):
|
1295 |
+
global_position_ids_batch_list.append(
|
1296 |
+
position_ids_list[j][i, : effective_seqlen_batch_list[i][j]]
|
1297 |
+
)
|
1298 |
+
global_position_ids_list.append(
|
1299 |
+
torch.cat(global_position_ids_batch_list, dim=0)
|
1300 |
+
)
|
1301 |
+
global_position_ids = torch.nn.utils.rnn.pad_sequence(
|
1302 |
+
global_position_ids_list, batch_first=True, padding_value=-1
|
1303 |
+
)
|
1304 |
+
new_position_ids = torch.narrow(
|
1305 |
+
global_position_ids,
|
1306 |
+
1,
|
1307 |
+
start_idx_reshard,
|
1308 |
+
end_idx_reshard - start_idx_reshard,
|
1309 |
+
)
|
1310 |
+
|
1311 |
+
# Gather labels and reshard it evenly
|
1312 |
+
labels_list = [
|
1313 |
+
torch.zeros(
|
1314 |
+
(bs, ulysess_seq_len[i]), dtype=labels.dtype, device=labels.device
|
1315 |
+
)
|
1316 |
+
for i in range(sp_degree)
|
1317 |
+
]
|
1318 |
+
dist.all_gather(labels_list, labels, group=sp_group)
|
1319 |
+
global_labels_list = []
|
1320 |
+
for i in range(bs):
|
1321 |
+
global_labels_batch_list = []
|
1322 |
+
for j in range(sp_degree):
|
1323 |
+
global_labels_batch_list.append(
|
1324 |
+
labels_list[j][i, : effective_seqlen_batch_list[i][j]]
|
1325 |
+
)
|
1326 |
+
global_labels_list.append(torch.cat(global_labels_batch_list, dim=0))
|
1327 |
+
global_labels = torch.nn.utils.rnn.pad_sequence(
|
1328 |
+
global_labels_list, batch_first=True, padding_value=IGNORE_INDEX
|
1329 |
+
)
|
1330 |
+
new_labels = torch.narrow(
|
1331 |
+
global_labels, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard
|
1332 |
+
)
|
1333 |
+
|
1334 |
+
# Gather inputs_embeds and reshard it evenly
|
1335 |
+
# TODO: Fix the non-enough images.
|
1336 |
+
# inputs_embeds_list = [torch.zeros((bs, ulysess_seq_len[i], inputs_embeds.shape[-1]), dtype=inputs_embeds.dtype, device=inputs_embeds.device, requires_grad=True) for i in range(sp_degree)]
|
1337 |
+
# dist.all_gather(inputs_embeds_list, inputs_embeds, group=sp_group)
|
1338 |
+
# global_inputs_embeds_list = []
|
1339 |
+
# for i in range(bs):
|
1340 |
+
# global_inputs_embeds_batch_list = []
|
1341 |
+
# for j in range(sp_degree):
|
1342 |
+
# global_inputs_embeds_batch_list.append(inputs_embeds_list[j][i, :effective_seqlen_batch_list[i][j]])
|
1343 |
+
# global_inputs_embeds_list.append(torch.cat(global_inputs_embeds_batch_list, dim=0))
|
1344 |
+
# global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(global_inputs_embeds_list, batch_first=True, padding_value=0)
|
1345 |
+
# new_inputs_embeds = torch.narrow(global_inputs_embeds, 1, start_idx_reshard, end_idx_reshard - start_idx_reshard)
|
1346 |
+
|
1347 |
+
# Gather all hidden states and flaten them
|
1348 |
+
ulysess_seq_len_cat = torch.cat(ulysess_seq_len, dim=0)
|
1349 |
+
global_inputs_embeds_list = []
|
1350 |
+
if sp_rank == 0:
|
1351 |
+
original_start_id = 0
|
1352 |
+
original_end_id = torch.sum(ulysess_seq_len_cat[: sp_rank + 1]).item()
|
1353 |
+
elif sp_rank == sp_degree - 1:
|
1354 |
+
original_start_id = torch.sum(ulysess_seq_len_cat[:sp_rank]).item()
|
1355 |
+
original_end_id = torch.sum(ulysess_seq_len_cat[: sp_rank + 1]).item()
|
1356 |
+
else:
|
1357 |
+
original_start_id = torch.sum(ulysess_seq_len_cat[:sp_rank]).item()
|
1358 |
+
original_end_id = torch.sum(ulysess_seq_len_cat[: sp_rank + 1]).item()
|
1359 |
+
all_inputs_embeds = torch.zeros(
|
1360 |
+
bs,
|
1361 |
+
torch.sum(ulysess_seq_len_cat),
|
1362 |
+
inputs_embeds.shape[-1],
|
1363 |
+
dtype=inputs_embeds.dtype,
|
1364 |
+
device=inputs_embeds.device,
|
1365 |
+
).contiguous()
|
1366 |
+
all_inputs_embeds[:, original_start_id:original_end_id, :] += inputs_embeds
|
1367 |
+
dist.barrier(group=sp_group)
|
1368 |
+
dist.all_reduce(all_inputs_embeds, group=sp_group)
|
1369 |
+
dist.barrier(group=sp_group)
|
1370 |
+
for i in range(bs):
|
1371 |
+
global_inputs_embeds_batch_list = []
|
1372 |
+
for j in range(sp_degree):
|
1373 |
+
prev_len = torch.sum(ulysess_seq_len_cat[:j]).item() if j > 0 else 0
|
1374 |
+
start_id = prev_len
|
1375 |
+
end_id = prev_len + effective_seqlen_batch_list[i][j]
|
1376 |
+
global_inputs_embeds_batch_list.append(
|
1377 |
+
all_inputs_embeds[i, start_id:end_id]
|
1378 |
+
)
|
1379 |
+
global_inputs_embeds_list.append(
|
1380 |
+
torch.cat(global_inputs_embeds_batch_list, dim=0)
|
1381 |
+
)
|
1382 |
+
global_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
|
1383 |
+
global_inputs_embeds_list, batch_first=True, padding_value=0
|
1384 |
+
)
|
1385 |
+
new_inputs_embeds = torch.narrow(
|
1386 |
+
global_inputs_embeds,
|
1387 |
+
1,
|
1388 |
+
start_idx_reshard,
|
1389 |
+
end_idx_reshard - start_idx_reshard,
|
1390 |
+
)
|
1391 |
+
|
1392 |
+
return (
|
1393 |
+
None,
|
1394 |
+
new_position_ids,
|
1395 |
+
new_attention_mask,
|
1396 |
+
past_key_values,
|
1397 |
+
new_inputs_embeds,
|
1398 |
+
new_labels,
|
1399 |
+
None, # sorted_seqlens_in_batch set as None for sequence parallelism
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
# kentang-mit@: reorder and repack (reduce computation overhead)
|
1403 |
+
# requires transformers replacement.
|
1404 |
+
new_inputs_embeds = []
|
1405 |
+
new_position_ids = []
|
1406 |
+
new_labels = []
|
1407 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
1408 |
+
sorted_seqlens_in_batch, sorted_idx = torch.sort(
|
1409 |
+
seqlens_in_batch, descending=True
|
1410 |
+
)
|
1411 |
+
max_seqlen = inputs_embeds.shape[1]
|
1412 |
+
|
1413 |
+
cur_inputs_embeds = []
|
1414 |
+
cur_position_ids = []
|
1415 |
+
cur_labels = []
|
1416 |
+
cur_batch_len = 0
|
1417 |
+
for i in range(len(sorted_seqlens_in_batch)):
|
1418 |
+
cur_seqlen = sorted_seqlens_in_batch[i].item()
|
1419 |
+
if cur_seqlen + cur_batch_len <= max_seqlen:
|
1420 |
+
cur_batch_len += cur_seqlen
|
1421 |
+
# each item: num_tokens x num_channels
|
1422 |
+
# remove padding on-the-fly
|
1423 |
+
cur_inputs_embeds.append(
|
1424 |
+
inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]]
|
1425 |
+
)
|
1426 |
+
cur_position_ids.append(
|
1427 |
+
torch.arange(
|
1428 |
+
cur_inputs_embeds[-1].shape[0],
|
1429 |
+
device=cur_inputs_embeds[-1].device,
|
1430 |
+
)
|
1431 |
+
)
|
1432 |
+
# each item: num_tokens
|
1433 |
+
# remove padding on-the-fly
|
1434 |
+
cur_labels.append(labels[sorted_idx[i]][attention_mask[sorted_idx[i]]])
|
1435 |
+
else:
|
1436 |
+
new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0))
|
1437 |
+
new_position_ids.append(torch.cat(cur_position_ids, 0))
|
1438 |
+
new_labels.append(torch.cat(cur_labels, 0))
|
1439 |
+
# The current batch is too long. We will start a new batch.
|
1440 |
+
cur_batch_len = cur_seqlen
|
1441 |
+
cur_inputs_embeds = [
|
1442 |
+
inputs_embeds[sorted_idx[i]][attention_mask[sorted_idx[i]]]
|
1443 |
+
]
|
1444 |
+
cur_position_ids = [
|
1445 |
+
torch.arange(
|
1446 |
+
cur_inputs_embeds[-1].shape[0],
|
1447 |
+
device=cur_inputs_embeds[-1].device,
|
1448 |
+
)
|
1449 |
+
]
|
1450 |
+
cur_labels = [labels[sorted_idx[i]][attention_mask[sorted_idx[i]]]]
|
1451 |
+
# Mask the first token in the labels for every sample
|
1452 |
+
# cur_labels[-1][0] = IGNORE_INDEX
|
1453 |
+
|
1454 |
+
if len(cur_inputs_embeds):
|
1455 |
+
new_inputs_embeds.append(torch.cat(cur_inputs_embeds, 0))
|
1456 |
+
new_position_ids.append(torch.cat(cur_position_ids, 0))
|
1457 |
+
new_labels.append(torch.cat(cur_labels, 0))
|
1458 |
+
|
1459 |
+
new_inputs_embeds = torch.nn.utils.rnn.pad_sequence(
|
1460 |
+
new_inputs_embeds, batch_first=True, padding_value=self.llm.pad_token_id
|
1461 |
+
)
|
1462 |
+
|
1463 |
+
new_position_ids = torch.nn.utils.rnn.pad_sequence(
|
1464 |
+
new_position_ids, batch_first=True, padding_value=-1
|
1465 |
+
)
|
1466 |
+
|
1467 |
+
new_labels = torch.nn.utils.rnn.pad_sequence(
|
1468 |
+
new_labels, batch_first=True, padding_value=IGNORE_INDEX
|
1469 |
+
)
|
1470 |
+
## yunhao: it's currently a workaround to avoid errors for seq_len < 100
|
1471 |
+
new_attention_mask = new_position_ids.ne(-1)
|
1472 |
+
# sanity check
|
1473 |
+
assert new_attention_mask.sum() == attention_mask.sum()
|
1474 |
+
|
1475 |
+
# Handle sequence parallelism: Calculate the position ids for sequence parallelism
|
1476 |
+
# NOTE: This implementation only works for [<bos>, <img>, ..., <img>, <caption>] pattern
|
1477 |
+
# if sp_degree > 1 and sp_rank > 0:
|
1478 |
+
# cur_len = new_position_ids.shape[-1]
|
1479 |
+
# if sp_rank < sp_degree - 1: # Intermediate ranks
|
1480 |
+
# offset = cur_len * sp_rank + 1
|
1481 |
+
# new_position_ids = new_position_ids + offset
|
1482 |
+
# elif sp_rank == sp_degree - 1: # The last rank
|
1483 |
+
# assert new_labels[0, -1] != IGNORE_INDEX, "The first sequence should be longest one."
|
1484 |
+
# last_img_token_index = torch.where(new_labels[0] == IGNORE_INDEX)[0][-1]
|
1485 |
+
# # print(f"last_img_token_index, {last_img_token_index}")
|
1486 |
+
# # if sp_degree == 2: # Handle SP=2, because of bos_token
|
1487 |
+
# # offset = last_img_token_index + 3
|
1488 |
+
# # else:
|
1489 |
+
# # offset = (last_img_token_index + 2) * sp_rank + 1
|
1490 |
+
# offset = (last_img_token_index + 1) * sp_rank + 1
|
1491 |
+
# offset_mask = new_position_ids != -1
|
1492 |
+
# new_position_ids[offset_mask] += offset
|
1493 |
+
# else:
|
1494 |
+
# raise ValueError(f"sp_rank {sp_rank} is out of range {sp_degree}")
|
1495 |
+
|
1496 |
+
return (
|
1497 |
+
None,
|
1498 |
+
new_position_ids,
|
1499 |
+
new_attention_mask,
|
1500 |
+
past_key_values,
|
1501 |
+
new_inputs_embeds,
|
1502 |
+
new_labels,
|
1503 |
+
sorted_seqlens_in_batch,
|
1504 |
+
)
|
1505 |
+
|
1506 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
1507 |
+
if model_args.mm_use_im_patch_token:
|
1508 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
1509 |
+
self.resize_token_embeddings(len(tokenizer))
|
1510 |
+
|
1511 |
+
if model_args.mm_use_im_start_end:
|
1512 |
+
num_new_tokens = tokenizer.add_tokens(
|
1513 |
+
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
|
1514 |
+
)
|
1515 |
+
self.resize_token_embeddings(len(tokenizer))
|
1516 |
+
|
1517 |
+
if num_new_tokens > 0:
|
1518 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
1519 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
1520 |
+
|
1521 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
1522 |
+
dim=0, keepdim=True
|
1523 |
+
)
|
1524 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
1525 |
+
dim=0, keepdim=True
|
1526 |
+
)
|
1527 |
+
|
1528 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
1529 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
1530 |
+
## TODO yunhao: handle cases for <im_st> <im_end>
|
1531 |
+
if model_args.pretrain_mm_mlp_adapter:
|
1532 |
+
mm_projector_weights = torch.load(
|
1533 |
+
model_args.pretrain_mm_mlp_adapter, map_location="cpu"
|
1534 |
+
)
|
1535 |
+
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
|
1536 |
+
assert num_new_tokens == 2
|
1537 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
1538 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[
|
1539 |
+
-num_new_tokens:
|
1540 |
+
]
|
1541 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
1542 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
1543 |
+
else:
|
1544 |
+
raise ValueError(
|
1545 |
+
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
|
1546 |
+
)
|
1547 |
+
elif model_args.mm_use_im_patch_token:
|
1548 |
+
if model_args.mm_projector:
|
1549 |
+
for p in self.get_input_embeddings().parameters():
|
1550 |
+
p.requires_grad = False
|
1551 |
+
for p in self.get_output_embeddings().parameters():
|
1552 |
+
p.requires_grad = False
|
llava_llama.py
ADDED
@@ -0,0 +1,1193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
# from .builder import build_llm_and_tokenizer, build_mm_projector, build_vision_tower
|
3 |
+
import os
|
4 |
+
import os.path as osp
|
5 |
+
import shutil
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
# from .llava_llama import LlavaLlamaModel
|
10 |
+
# from llava.model import *
|
11 |
+
# from llava.model.utils import is_mm_model
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from huggingface_hub import repo_exists, snapshot_download
|
15 |
+
from huggingface_hub.utils import HFValidationError, validate_repo_id
|
16 |
+
# from llava.model.multimodal_encoder.vision_encoder import (VisionTower,
|
17 |
+
# VisionTowerS2)
|
18 |
+
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
|
19 |
+
AutoTokenizer, BitsAndBytesConfig, GenerationConfig,
|
20 |
+
LlamaConfig, LlamaForCausalLM, PretrainedConfig,
|
21 |
+
PreTrainedModel, SiglipImageProcessor,
|
22 |
+
SiglipVisionModel)
|
23 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
24 |
+
|
25 |
+
from .configuration_llava import LlavaConfig # , LlavaLlamaConfig
|
26 |
+
# from .llava_arch import LlavaMetaForCausalLM, LlavaMetaModel
|
27 |
+
from .utils import get_model_config
|
28 |
+
|
29 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
30 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
31 |
+
|
32 |
+
LOGDIR = "."
|
33 |
+
|
34 |
+
# Model Constants
|
35 |
+
IGNORE_INDEX = -100
|
36 |
+
IMAGE_TOKEN_INDEX = -200
|
37 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
38 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
39 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
40 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
41 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
42 |
+
|
43 |
+
def is_deepspeed_zero3_enabled():
|
44 |
+
return None
|
45 |
+
|
46 |
+
import torch
|
47 |
+
import torch.nn as nn
|
48 |
+
from transformers import (AutoConfig, AutoModel, PretrainedConfig,
|
49 |
+
PreTrainedModel)
|
50 |
+
|
51 |
+
|
52 |
+
class IdentityMap(nn.Module):
|
53 |
+
def __init__(self):
|
54 |
+
super().__init__()
|
55 |
+
|
56 |
+
def forward(self, x, *args, **kwargs):
|
57 |
+
return x
|
58 |
+
|
59 |
+
@property
|
60 |
+
def config(self):
|
61 |
+
return {"mm_projector_type": "identity"}
|
62 |
+
|
63 |
+
|
64 |
+
class SimpleResBlock(nn.Module):
|
65 |
+
def __init__(self, channels):
|
66 |
+
super().__init__()
|
67 |
+
self.pre_norm = nn.LayerNorm(channels)
|
68 |
+
|
69 |
+
self.proj = nn.Sequential(
|
70 |
+
nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
|
71 |
+
)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x = self.pre_norm(x)
|
75 |
+
return x + self.proj(x)
|
76 |
+
|
77 |
+
|
78 |
+
class DownSampleBlock(nn.Module):
|
79 |
+
def forward(self, x):
|
80 |
+
vit_embeds = x
|
81 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
82 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
83 |
+
vit_embeds = self.flat_square(vit_embeds)
|
84 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
85 |
+
return vit_embeds
|
86 |
+
|
87 |
+
def flat_square(self, x):
|
88 |
+
n, w, h, c = x.size()
|
89 |
+
if w % 2 == 1:
|
90 |
+
x = torch.concat(
|
91 |
+
[x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1
|
92 |
+
).contiguous()
|
93 |
+
n, w, h, c = x.size()
|
94 |
+
if h % 2 == 1:
|
95 |
+
x = torch.concat(
|
96 |
+
[x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2
|
97 |
+
).contiguous()
|
98 |
+
n, w, h, c = x.size()
|
99 |
+
x = x.view(n, w, int(h / 2), int(c * 2))
|
100 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
101 |
+
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
|
102 |
+
return x
|
103 |
+
|
104 |
+
|
105 |
+
class MultimodalProjectorConfig(PretrainedConfig):
|
106 |
+
model_type = "v2l_projector"
|
107 |
+
|
108 |
+
def __init__(self, mm_projector_type: str = None, **kwargs):
|
109 |
+
super().__init__()
|
110 |
+
self.mm_projector_type = mm_projector_type
|
111 |
+
|
112 |
+
|
113 |
+
class MultimodalProjector(PreTrainedModel):
|
114 |
+
config_class = MultimodalProjectorConfig
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self, mm_projector_cfg: MultimodalProjectorConfig, config: PretrainedConfig
|
118 |
+
):
|
119 |
+
super().__init__(mm_projector_cfg)
|
120 |
+
mm_projector_type = mm_projector_cfg.mm_projector_type
|
121 |
+
if mm_projector_type == "identity":
|
122 |
+
self.layers = IdentityMap()
|
123 |
+
elif mm_projector_type == "linear":
|
124 |
+
self.layers = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
125 |
+
elif mm_projector_type == "mlp_downsample":
|
126 |
+
self.layers = nn.Sequential(
|
127 |
+
DownSampleBlock(),
|
128 |
+
nn.LayerNorm(config.mm_hidden_size * 4),
|
129 |
+
nn.Linear(config.mm_hidden_size * 4, config.hidden_size),
|
130 |
+
nn.GELU(),
|
131 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", mm_projector_type)
|
135 |
+
if mlp_gelu_match:
|
136 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
137 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
138 |
+
for _ in range(1, mlp_depth):
|
139 |
+
modules.append(nn.GELU())
|
140 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
141 |
+
self.layers = nn.Sequential(*modules)
|
142 |
+
else:
|
143 |
+
raise ValueError(f"Unknown projector type: {mm_projector_type}")
|
144 |
+
|
145 |
+
def forward(self, x, *args, **kwargs):
|
146 |
+
return self.layers(x)
|
147 |
+
|
148 |
+
|
149 |
+
def build_mm_projector(
|
150 |
+
model_type_or_path: str, config: PretrainedConfig
|
151 |
+
) -> PreTrainedModel:
|
152 |
+
if model_type_or_path is None:
|
153 |
+
return None
|
154 |
+
|
155 |
+
## load from pretrained model
|
156 |
+
if config.resume_path:
|
157 |
+
assert os.path.exists(
|
158 |
+
model_type_or_path
|
159 |
+
), f"Resume mm projector path {model_type_or_path} does not exist!"
|
160 |
+
return MultimodalProjector.from_pretrained(
|
161 |
+
model_type_or_path, config, torch_dtype=eval(config.model_dtype)
|
162 |
+
)
|
163 |
+
## build from scratch
|
164 |
+
else:
|
165 |
+
mm_projector_cfg = MultimodalProjectorConfig(model_type_or_path)
|
166 |
+
mm_projector = MultimodalProjector(mm_projector_cfg, config).to(
|
167 |
+
eval(config.model_dtype)
|
168 |
+
)
|
169 |
+
return mm_projector
|
170 |
+
|
171 |
+
|
172 |
+
class VisionTower(nn.Module):
|
173 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
174 |
+
super().__init__()
|
175 |
+
|
176 |
+
self.is_loaded = False
|
177 |
+
|
178 |
+
self.vision_tower_name = vision_tower
|
179 |
+
self.select_layer = getattr(args, "mm_vision_select_layer", -2)
|
180 |
+
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
|
181 |
+
|
182 |
+
self.cfg_only = None
|
183 |
+
|
184 |
+
def feature_select(self, image_forward_outs):
|
185 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
186 |
+
if self.select_feature == "patch":
|
187 |
+
image_features = image_features[:, 1:]
|
188 |
+
elif self.select_feature == "cls_patch":
|
189 |
+
image_features = image_features
|
190 |
+
else:
|
191 |
+
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
192 |
+
return image_features
|
193 |
+
|
194 |
+
def _maybe_resize_pos_embeds(
|
195 |
+
self,
|
196 |
+
model: PreTrainedModel,
|
197 |
+
image_processor,
|
198 |
+
resolution: int = -1,
|
199 |
+
interpolate_mode: str = "linear",
|
200 |
+
):
|
201 |
+
if resolution in [model.config.image_size, -1]:
|
202 |
+
return
|
203 |
+
print(
|
204 |
+
f"Resizing vision model's position embeddings to support higher vision resolution: from {model.config.image_size} to {resolution} ..."
|
205 |
+
)
|
206 |
+
embeddings = model.vision_model.embeddings
|
207 |
+
patch_size = embeddings.patch_size
|
208 |
+
num_new_tokens = int((resolution // patch_size) ** 2)
|
209 |
+
|
210 |
+
old_embeddings = embeddings.position_embedding
|
211 |
+
match interpolate_mode:
|
212 |
+
case "linear":
|
213 |
+
## Step 1: Calculate the corresponding patch ID (pid) in the current resolution (M patches) based on the target resolution (N patches). Formula: pid = pid / N * M
|
214 |
+
## Step 2: Obtain new embeddings by interpolating between the embeddings of the two nearest calculated patch IDs. Formula: new_embeds = (pid - floor(pid)) * embeds[ceil(pid)] + (ceil(pid) - pid) * embeds[floor(pid)]
|
215 |
+
import torch
|
216 |
+
import torch.nn as nn
|
217 |
+
|
218 |
+
|
219 |
+
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
220 |
+
new_embeddings = nn.Embedding(
|
221 |
+
num_new_tokens,
|
222 |
+
old_embedding_dim,
|
223 |
+
dtype=old_embeddings.weight.dtype,
|
224 |
+
device=old_embeddings.weight.device,
|
225 |
+
)
|
226 |
+
mapped_indices = (
|
227 |
+
torch.arange(num_new_tokens).to(old_embeddings.weight.device)
|
228 |
+
/ (num_new_tokens - 1)
|
229 |
+
* (old_num_tokens - 1)
|
230 |
+
)
|
231 |
+
floor_indices = torch.clamp(
|
232 |
+
mapped_indices.floor().long(), min=0, max=old_num_tokens - 1
|
233 |
+
)
|
234 |
+
ceil_indices = torch.clamp(
|
235 |
+
mapped_indices.ceil().long(), min=0, max=old_num_tokens - 1
|
236 |
+
)
|
237 |
+
if is_deepspeed_zero3_enabled():
|
238 |
+
params = [old_embeddings.weight, new_embeddings.weight]
|
239 |
+
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
240 |
+
interpolated_embeds = (mapped_indices - floor_indices)[
|
241 |
+
:, None
|
242 |
+
] * old_embeddings.weight.data[ceil_indices, :] + (
|
243 |
+
ceil_indices - mapped_indices
|
244 |
+
)[
|
245 |
+
:, None
|
246 |
+
] * old_embeddings.weight.data[
|
247 |
+
floor_indices, :
|
248 |
+
]
|
249 |
+
else:
|
250 |
+
interpolated_embeds = (mapped_indices - floor_indices)[
|
251 |
+
:, None
|
252 |
+
] * old_embeddings.weight.data[ceil_indices, :] + (
|
253 |
+
ceil_indices - mapped_indices
|
254 |
+
)[
|
255 |
+
:, None
|
256 |
+
] * old_embeddings.weight.data[
|
257 |
+
floor_indices, :
|
258 |
+
]
|
259 |
+
new_embeddings.weight.data = interpolated_embeds
|
260 |
+
case _:
|
261 |
+
raise NotImplementedError
|
262 |
+
|
263 |
+
if hasattr(old_embeddings, "_hf_hook"):
|
264 |
+
hook = old_embeddings._hf_hook
|
265 |
+
# disable to inference
|
266 |
+
# add_hook_to_module(new_embeddings, hook)
|
267 |
+
new_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
|
268 |
+
## update vision encoder's configurations
|
269 |
+
model.config.image_size = resolution
|
270 |
+
if hasattr(image_processor, "crop_size"):
|
271 |
+
# CLIP vision tower
|
272 |
+
image_processor.crop_size = resolution
|
273 |
+
else:
|
274 |
+
# SIGLIP vision tower
|
275 |
+
assert hasattr(image_processor, "size")
|
276 |
+
image_processor.size = {"height": resolution, "width": resolution}
|
277 |
+
## TODO define a '_reinitialize' method for VisionTower
|
278 |
+
embeddings.position_embedding = new_embeddings
|
279 |
+
embeddings.image_size = resolution
|
280 |
+
embeddings.num_patches = embeddings.num_positions = num_new_tokens
|
281 |
+
embeddings.position_ids = (
|
282 |
+
torch.arange(embeddings.num_positions)
|
283 |
+
.expand((1, -1))
|
284 |
+
.to(old_embeddings.weight.device)
|
285 |
+
)
|
286 |
+
|
287 |
+
def forward(self, images):
|
288 |
+
if type(images) is list:
|
289 |
+
image_features = []
|
290 |
+
for image in images:
|
291 |
+
image_forward_out = self.vision_tower(
|
292 |
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
|
293 |
+
output_hidden_states=True,
|
294 |
+
)
|
295 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
296 |
+
image_features.append(image_feature)
|
297 |
+
else:
|
298 |
+
image_forward_outs = self.vision_tower(
|
299 |
+
images.to(device=self.device, dtype=self.dtype),
|
300 |
+
output_hidden_states=True,
|
301 |
+
)
|
302 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
303 |
+
|
304 |
+
return image_features
|
305 |
+
|
306 |
+
@property
|
307 |
+
def dummy_feature(self):
|
308 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
309 |
+
|
310 |
+
@property
|
311 |
+
def dtype(self):
|
312 |
+
return self.vision_tower.dtype
|
313 |
+
|
314 |
+
@property
|
315 |
+
def device(self):
|
316 |
+
return self.vision_tower.device
|
317 |
+
|
318 |
+
@property
|
319 |
+
def config(self):
|
320 |
+
if self.is_loaded:
|
321 |
+
return self.vision_tower.config
|
322 |
+
else:
|
323 |
+
return self.cfg_only
|
324 |
+
|
325 |
+
@property
|
326 |
+
def hidden_size(self):
|
327 |
+
return self.config.hidden_size
|
328 |
+
|
329 |
+
@property
|
330 |
+
def num_patches(self):
|
331 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
332 |
+
|
333 |
+
|
334 |
+
class SiglipVisionTower(VisionTower):
|
335 |
+
def __init__(
|
336 |
+
self, model_name_or_path: str, config: PretrainedConfig, state_dict=None
|
337 |
+
):
|
338 |
+
super().__init__(model_name_or_path, config)
|
339 |
+
self.image_processor = SiglipImageProcessor.from_pretrained(model_name_or_path)
|
340 |
+
self.vision_tower = SiglipVisionModel.from_pretrained(
|
341 |
+
# TODO(ligeng): why pass config here leading to errors?
|
342 |
+
model_name_or_path,
|
343 |
+
torch_dtype=eval(config.model_dtype),
|
344 |
+
state_dict=state_dict,
|
345 |
+
)
|
346 |
+
self.is_loaded = True
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
def build_vision_tower(
|
351 |
+
model_name_or_path: str, config: PretrainedConfig
|
352 |
+
) -> PreTrainedModel:
|
353 |
+
## skip vision tower instantiation
|
354 |
+
if model_name_or_path is None:
|
355 |
+
return None
|
356 |
+
|
357 |
+
vision_tower_arch = None
|
358 |
+
if config.resume_path and "radio" not in model_name_or_path:
|
359 |
+
assert os.path.exists(
|
360 |
+
model_name_or_path
|
361 |
+
), f"Resume vision tower path {model_name_or_path} does not exist!"
|
362 |
+
vision_tower_cfg = AutoConfig.from_pretrained(
|
363 |
+
model_name_or_path, trust_remote_code=True
|
364 |
+
)
|
365 |
+
vision_tower_arch = vision_tower_cfg.architectures[0].lower()
|
366 |
+
vision_tower_name = (
|
367 |
+
vision_tower_arch if vision_tower_arch is not None else model_name_or_path
|
368 |
+
)
|
369 |
+
|
370 |
+
use_s2 = getattr(config, "s2", False)
|
371 |
+
|
372 |
+
if "siglip" in vision_tower_name:
|
373 |
+
if use_s2:
|
374 |
+
vision_tower = SiglipVisionTowerS2(model_name_or_path, config)
|
375 |
+
else:
|
376 |
+
vision_tower = SiglipVisionTower(model_name_or_path, config)
|
377 |
+
else:
|
378 |
+
raise ValueError(f"Unknown vision tower: {model_name_or_path}")
|
379 |
+
|
380 |
+
config.mm_hidden_size = (
|
381 |
+
vision_tower.config.hidden_size if not use_s2 else vision_tower.hidden_size
|
382 |
+
)
|
383 |
+
return vision_tower
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
def has_tokenizer(repo_id_or_path: str) -> bool:
|
388 |
+
# Check if the tokenizer is in a local directory
|
389 |
+
if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")):
|
390 |
+
return True
|
391 |
+
|
392 |
+
# Check if the tokenizer is in a Hugging Face Hub repo
|
393 |
+
try:
|
394 |
+
return repo_exists(repo_id_or_path) and file_exists(
|
395 |
+
repo_id_or_path, "tokenizer_config.json"
|
396 |
+
)
|
397 |
+
except HFValidationError:
|
398 |
+
return False
|
399 |
+
|
400 |
+
|
401 |
+
def context_length_extension(config):
|
402 |
+
orig_ctx_len = getattr(config, "max_position_embeddings", None)
|
403 |
+
model_max_length = getattr(config, "model_max_length", None)
|
404 |
+
if orig_ctx_len and model_max_length > orig_ctx_len:
|
405 |
+
print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}")
|
406 |
+
scaling_factor = float(math.ceil(model_max_length / orig_ctx_len))
|
407 |
+
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
|
408 |
+
return config
|
409 |
+
|
410 |
+
|
411 |
+
def build_llm_and_tokenizer(
|
412 |
+
model_name_or_path: str,
|
413 |
+
config: PretrainedConfig,
|
414 |
+
attn_implementation=None,
|
415 |
+
model_max_length=None,
|
416 |
+
*args,
|
417 |
+
**kwargs,
|
418 |
+
):
|
419 |
+
llm_cfg = AutoConfig.from_pretrained(model_name_or_path)
|
420 |
+
llm_cfg._attn_implementation = attn_implementation
|
421 |
+
llm_cfg.model_max_length = model_max_length
|
422 |
+
if model_max_length is not None:
|
423 |
+
context_length_extension(llm_cfg)
|
424 |
+
|
425 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
426 |
+
model_name_or_path,
|
427 |
+
config=llm_cfg,
|
428 |
+
torch_dtype=eval(config.model_dtype),
|
429 |
+
*args,
|
430 |
+
**kwargs,
|
431 |
+
)
|
432 |
+
|
433 |
+
# Locate the tokenizer.
|
434 |
+
llm_path = model_name_or_path
|
435 |
+
if not has_tokenizer(llm_path):
|
436 |
+
llm_path = osp.join(llm_path, "llm")
|
437 |
+
if not has_tokenizer(llm_path):
|
438 |
+
raise ValueError(f"Cannot find tokenizer in {llm_path}.")
|
439 |
+
|
440 |
+
# TODO(ligeng): use LLM class to judge to better compability.
|
441 |
+
try:
|
442 |
+
llm_arch = getattr(llm_cfg, "architectures")[0].lower()
|
443 |
+
except BaseException:
|
444 |
+
warnings.warn(
|
445 |
+
f'Cannot find LLM architecture, please check the "config.json" under "{llm_path}".'
|
446 |
+
)
|
447 |
+
|
448 |
+
if "mpt" in llm_arch:
|
449 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
450 |
+
llm_path,
|
451 |
+
model_max_length=llm_cfg.model_max_length,
|
452 |
+
padding_side="right",
|
453 |
+
)
|
454 |
+
elif "yi" in llm_path or (
|
455 |
+
getattr(llm_cfg, "num_hidden_layers", -1) == 60
|
456 |
+
and getattr(llm_cfg, "num_attention_heads", -1) == 56
|
457 |
+
):
|
458 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
459 |
+
llm_path,
|
460 |
+
model_max_length=llm_cfg.model_max_length,
|
461 |
+
padding_side="right",
|
462 |
+
use_fast=False,
|
463 |
+
)
|
464 |
+
else:
|
465 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
466 |
+
llm_path,
|
467 |
+
model_max_length=llm_cfg.model_max_length,
|
468 |
+
padding_side="right",
|
469 |
+
use_fast=False,
|
470 |
+
legacy=False,
|
471 |
+
)
|
472 |
+
|
473 |
+
# TODO(ligeng): is this necessary for llava?
|
474 |
+
config.hidden_size = llm.config.hidden_size
|
475 |
+
return llm, tokenizer
|
476 |
+
|
477 |
+
|
478 |
+
def is_mm_model(model_path):
|
479 |
+
"""
|
480 |
+
Check if the model at the given path is a visual language model.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
model_path (str): The path to the model.
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
bool: True if the model is an MM model, False otherwise.
|
487 |
+
"""
|
488 |
+
config = AutoConfig.from_pretrained(model_path)
|
489 |
+
architectures = config.architectures
|
490 |
+
for architecture in architectures:
|
491 |
+
if "llava" in architecture.lower():
|
492 |
+
return True
|
493 |
+
return False
|
494 |
+
|
495 |
+
|
496 |
+
def load_pretrained_model(
|
497 |
+
model_path,
|
498 |
+
model_name,
|
499 |
+
model_base=None,
|
500 |
+
load_8bit=False,
|
501 |
+
load_4bit=False,
|
502 |
+
device_map="auto",
|
503 |
+
device="cuda",
|
504 |
+
**kwargs,
|
505 |
+
):
|
506 |
+
kwargs = {"device_map": device_map, **kwargs}
|
507 |
+
|
508 |
+
if device != "cuda":
|
509 |
+
kwargs["device_map"] = {"": device}
|
510 |
+
|
511 |
+
if load_8bit:
|
512 |
+
kwargs["load_in_8bit"] = True
|
513 |
+
elif load_4bit:
|
514 |
+
kwargs["load_in_4bit"] = True
|
515 |
+
kwargs["quantization_config"] = BitsAndBytesConfig(
|
516 |
+
load_in_4bit=True,
|
517 |
+
bnb_4bit_compute_dtype=torch.float16,
|
518 |
+
bnb_4bit_use_double_quant=True,
|
519 |
+
bnb_4bit_quant_type="nf4",
|
520 |
+
)
|
521 |
+
else:
|
522 |
+
kwargs["torch_dtype"] = torch.float16
|
523 |
+
# kwargs["torch_dtype"] = torch.bfloat16
|
524 |
+
|
525 |
+
if is_mm_model(model_path):
|
526 |
+
# Load LLaVA model
|
527 |
+
## TODO @yunhao: mind fixing lora
|
528 |
+
if "lora" in model_name.lower() and model_base is None:
|
529 |
+
warnings.warn(
|
530 |
+
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged."
|
531 |
+
)
|
532 |
+
if (
|
533 |
+
"lora" in model_name.lower() or "dora" in model_name.lower()
|
534 |
+
) and model_base is not None:
|
535 |
+
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
536 |
+
print(lora_cfg_pretrained)
|
537 |
+
print("Loading LLaVA from base model...")
|
538 |
+
config = AutoConfig.from_pretrained(model_base)
|
539 |
+
prepare_config_for_eval(config, kwargs)
|
540 |
+
model = LlavaLlamaModel.from_pretrained(
|
541 |
+
model_base, low_cpu_mem_usage=True, config=config, **kwargs
|
542 |
+
)
|
543 |
+
tokenizer = model.tokenizer
|
544 |
+
token_num, tokem_dim = (
|
545 |
+
model.llm.lm_head.out_features,
|
546 |
+
model.llm.lm_head.in_features,
|
547 |
+
)
|
548 |
+
if model.llm.lm_head.weight.shape[0] != token_num:
|
549 |
+
model.llm.lm_head.weight = torch.nn.Parameter(
|
550 |
+
torch.empty(
|
551 |
+
token_num, tokem_dim, device=model.device, dtype=model.dtype
|
552 |
+
)
|
553 |
+
)
|
554 |
+
model.llm.embed_tokens.weight = torch.nn.Parameter(
|
555 |
+
torch.empty(
|
556 |
+
token_num, tokem_dim, device=model.device, dtype=model.dtype
|
557 |
+
)
|
558 |
+
)
|
559 |
+
|
560 |
+
print("Loading additional LLaVA weights...")
|
561 |
+
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
|
562 |
+
non_lora_trainables = torch.load(
|
563 |
+
os.path.join(model_path, "non_lora_trainables.bin"),
|
564 |
+
map_location="cpu",
|
565 |
+
)
|
566 |
+
else:
|
567 |
+
# this is probably from HF Hub
|
568 |
+
from huggingface_hub import hf_hub_download
|
569 |
+
|
570 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
571 |
+
cache_file = hf_hub_download(
|
572 |
+
repo_id=repo_id, filename=filename, subfolder=subfolder
|
573 |
+
)
|
574 |
+
return torch.load(cache_file, map_location="cpu")
|
575 |
+
|
576 |
+
non_lora_trainables = load_from_hf(
|
577 |
+
model_path, "non_lora_trainables.bin"
|
578 |
+
)
|
579 |
+
non_lora_trainables = {
|
580 |
+
(k[11:] if k.startswith("base_model.") else k): v
|
581 |
+
for k, v in non_lora_trainables.items()
|
582 |
+
}
|
583 |
+
if any(k.startswith("model.model.") for k in non_lora_trainables):
|
584 |
+
non_lora_trainables = {
|
585 |
+
(k[6:] if k.startswith("model.") else k): v
|
586 |
+
for k, v in non_lora_trainables.items()
|
587 |
+
}
|
588 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
589 |
+
|
590 |
+
from peft import PeftModel
|
591 |
+
|
592 |
+
print("Loading LoRA weights...")
|
593 |
+
model = PeftModel.from_pretrained(model, model_path)
|
594 |
+
print("Merging LoRA weights...")
|
595 |
+
model = model.merge_and_unload()
|
596 |
+
print("Model is loaded...")
|
597 |
+
## TODO @yunhao: mind fixing this
|
598 |
+
elif model_base is not None:
|
599 |
+
# this may be mm projector only
|
600 |
+
print("Loading LLaVA from base model...")
|
601 |
+
cfg_pretrained = AutoConfig.from_pretrained(
|
602 |
+
model_path, trust_remote_code=True
|
603 |
+
)
|
604 |
+
mm_config_wrapper(config, kwargs)
|
605 |
+
if "mpt" in model_name.lower():
|
606 |
+
if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")):
|
607 |
+
shutil.copyfile(
|
608 |
+
os.path.join(model_base, "configuration_mpt.py"),
|
609 |
+
os.path.join(model_path, "configuration_mpt.py"),
|
610 |
+
)
|
611 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
612 |
+
model = LlavaMPTForCausalLM.from_pretrained(
|
613 |
+
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
|
614 |
+
)
|
615 |
+
else:
|
616 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
617 |
+
model_base, use_fast=False, legacy=False
|
618 |
+
)
|
619 |
+
model = LlavaLlamaForCausalLM.from_pretrained(
|
620 |
+
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs
|
621 |
+
)
|
622 |
+
else:
|
623 |
+
config = AutoConfig.from_pretrained(model_path)
|
624 |
+
config.resume_path = model_path
|
625 |
+
prepare_config_for_eval(config, kwargs)
|
626 |
+
if "mpt" in model_name.lower():
|
627 |
+
model = LlavaMPTForCausalLM.from_pretrained(
|
628 |
+
model_path, config=config, low_cpu_mem_usage=True, **kwargs
|
629 |
+
)
|
630 |
+
elif "mistral" in model_name.lower() or "mixtral" in model_name.lower():
|
631 |
+
model = LlavaMistralForCausalLM.from_pretrained(
|
632 |
+
model_path, config=config, low_cpu_mem_usage=True, **kwargs
|
633 |
+
)
|
634 |
+
elif "gemma" in model_name.lower():
|
635 |
+
model = LlavaGemmaForCausalLM.from_pretrained(
|
636 |
+
model_path, config=config, low_cpu_mem_usage=True, **kwargs
|
637 |
+
)
|
638 |
+
else:
|
639 |
+
# kentang-mit@: llama-2 model
|
640 |
+
# config._attn_implementation = "flash_attention_2"
|
641 |
+
model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs)
|
642 |
+
tokenizer = model.tokenizer
|
643 |
+
else:
|
644 |
+
# Load language model
|
645 |
+
if model_base is not None:
|
646 |
+
# PEFT model
|
647 |
+
from peft import PeftModel
|
648 |
+
|
649 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
650 |
+
model = AutoModelForCausalLM.from_pretrained(
|
651 |
+
model_base, low_cpu_mem_usage=True, **kwargs
|
652 |
+
)
|
653 |
+
print(f"Loading LoRA weights from {model_path}")
|
654 |
+
model = PeftModel.from_pretrained(model, model_path)
|
655 |
+
print(f"Merging weights")
|
656 |
+
model = model.merge_and_unload()
|
657 |
+
print("Convert to FP16...")
|
658 |
+
model.to(torch.float16)
|
659 |
+
else:
|
660 |
+
if "mpt" in model_name.lower():
|
661 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
662 |
+
model = AutoModelForCausalLM.from_pretrained(
|
663 |
+
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs
|
664 |
+
)
|
665 |
+
else:
|
666 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
667 |
+
model_path, use_fast=False, legacy=False
|
668 |
+
)
|
669 |
+
model = AutoModelForCausalLM.from_pretrained(
|
670 |
+
model_path, low_cpu_mem_usage=True, **kwargs
|
671 |
+
)
|
672 |
+
model.eval()
|
673 |
+
image_processor = None
|
674 |
+
if is_mm_model(model_path):
|
675 |
+
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
676 |
+
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
677 |
+
if mm_use_im_patch_token:
|
678 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
679 |
+
if mm_use_im_start_end:
|
680 |
+
tokenizer.add_tokens(
|
681 |
+
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
|
682 |
+
)
|
683 |
+
model.resize_token_embeddings(len(tokenizer))
|
684 |
+
vision_tower = model.get_vision_tower()
|
685 |
+
vision_tower.to(device=device, dtype=torch.float16)
|
686 |
+
# vision_tower.to(device=device, dtype=torch.bfloat16)
|
687 |
+
mm_projector = model.get_mm_projector()
|
688 |
+
mm_projector.to(device=device, dtype=torch.float16)
|
689 |
+
# mm_projector.to(device=device, dtype=torch.bfloat16)
|
690 |
+
image_processor = vision_tower.image_processor
|
691 |
+
|
692 |
+
if hasattr(model.llm.config, "max_sequence_length"):
|
693 |
+
context_len = model.config.max_sequence_length
|
694 |
+
else:
|
695 |
+
context_len = 2048
|
696 |
+
|
697 |
+
return tokenizer, model, image_processor, context_len
|
698 |
+
|
699 |
+
|
700 |
+
def parse_model_name_or_path(config: PretrainedConfig, model_name="llm", suffix="_cfg"):
|
701 |
+
target_model = f"{model_name}{suffix}"
|
702 |
+
target_cfg = getattr(config, target_model, None)
|
703 |
+
|
704 |
+
if isinstance(target_cfg, str):
|
705 |
+
return target_cfg
|
706 |
+
elif isinstance(target_cfg, dict):
|
707 |
+
return target_cfg["architectures"][0]
|
708 |
+
else:
|
709 |
+
raise ValueError(f"Invalid {target_model} configuration!")
|
710 |
+
|
711 |
+
|
712 |
+
def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict):
|
713 |
+
try:
|
714 |
+
# compatible with deprecated config convention
|
715 |
+
if getattr(config, "vision_tower_cfg", None) is None:
|
716 |
+
config.vision_tower_cfg = config.mm_vision_tower
|
717 |
+
except AttributeError:
|
718 |
+
raise ValueError(
|
719 |
+
f"Invalid configuration! Cannot find vision_tower in config:\n{config}"
|
720 |
+
)
|
721 |
+
|
722 |
+
config.model_dtype = kwargs.pop("torch_dtype").__str__()
|
723 |
+
# siglip does not support device_map = "auto"
|
724 |
+
vision_tower_name = parse_model_name_or_path(config, "vision_tower")
|
725 |
+
if "siglip" in vision_tower_name.lower():
|
726 |
+
kwargs["device_map"] = "cuda"
|
727 |
+
|
728 |
+
|
729 |
+
class LlavaLlamaConfig(LlavaConfig):
|
730 |
+
model_type = "llava_llama"
|
731 |
+
|
732 |
+
|
733 |
+
# class LlavaLlamaModel(PreTrainedModel):
|
734 |
+
# config_class = LlavaLlamaConfig
|
735 |
+
# main_input_name = "input_embeds"
|
736 |
+
# supports_gradient_checkpointing = True
|
737 |
+
|
738 |
+
# @classmethod
|
739 |
+
# def from_pretrained(
|
740 |
+
# cls,
|
741 |
+
# pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
742 |
+
# *model_args,
|
743 |
+
# config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
744 |
+
# cache_dir: Optional[Union[str, os.PathLike]] = None,
|
745 |
+
# ignore_mismatched_sizes: bool = False,
|
746 |
+
# force_download: bool = False,
|
747 |
+
# local_files_only: bool = False,
|
748 |
+
# token: Optional[Union[str, bool]] = None,
|
749 |
+
# revision: str = "main",
|
750 |
+
# use_safetensors: bool = None,
|
751 |
+
# **kwargs,
|
752 |
+
# ):
|
753 |
+
# if hasattr(cls, "load_pretrained"):
|
754 |
+
# return cls.load_pretrained(
|
755 |
+
# pretrained_model_name_or_path,
|
756 |
+
# *model_args,
|
757 |
+
# config=config,
|
758 |
+
# cache_dir=cache_dir,
|
759 |
+
# ignore_mismatched_sizes=ignore_mismatched_sizes,
|
760 |
+
# force_download=force_download,
|
761 |
+
# local_files_only=local_files_only,
|
762 |
+
# token=token,
|
763 |
+
# revision=revision,
|
764 |
+
# use_safetensors=use_safetensors,
|
765 |
+
# **kwargs,
|
766 |
+
# )
|
767 |
+
# return None
|
768 |
+
|
769 |
+
from abc import ABC, abstractmethod
|
770 |
+
from collections import OrderedDict
|
771 |
+
|
772 |
+
|
773 |
+
class LlavaMetaModel(ABC):
|
774 |
+
def init_vlm(self, config: PreTrainedModel = None, *args, **kwargs):
|
775 |
+
# TODO(ligeng): figure out how from_config and from_pretrained works in HF implementation.
|
776 |
+
if (
|
777 |
+
hasattr(self, "llm")
|
778 |
+
or hasattr(self, "vision_tower")
|
779 |
+
or hasattr(self, "mm_projector")
|
780 |
+
):
|
781 |
+
# already initialized, skipped
|
782 |
+
return
|
783 |
+
|
784 |
+
model_dtype = getattr(config, "model_dtype", "torch.float16")
|
785 |
+
if not hasattr(config, "model_dtype"):
|
786 |
+
warnings.warn(
|
787 |
+
"model_dtype not found in config, defaulting to torch.float16."
|
788 |
+
)
|
789 |
+
config.model_dtype = model_dtype
|
790 |
+
|
791 |
+
cfgs = get_model_config(config)
|
792 |
+
if len(cfgs) == 3:
|
793 |
+
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
|
794 |
+
else:
|
795 |
+
raise ValueError(
|
796 |
+
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
|
797 |
+
)
|
798 |
+
|
799 |
+
self.llm, self.tokenizer = build_llm_and_tokenizer(
|
800 |
+
llm_cfg, config, *args, **kwargs
|
801 |
+
)
|
802 |
+
self.vision_tower = build_vision_tower(vision_tower_cfg, config)
|
803 |
+
self.mm_projector = build_mm_projector(mm_projector_cfg, config)
|
804 |
+
|
805 |
+
self.post_config()
|
806 |
+
self.is_loaded = True
|
807 |
+
|
808 |
+
assert (
|
809 |
+
self.llm is not None
|
810 |
+
or self.vision_tower is not None
|
811 |
+
or self.mm_projector is not None
|
812 |
+
), "At least one of the components must be instantiated."
|
813 |
+
|
814 |
+
@classmethod
|
815 |
+
def load_from_config(cls, model_path_or_config, *args, **kwargs):
|
816 |
+
pass
|
817 |
+
|
818 |
+
## FIXME we will use this function to load model in the future
|
819 |
+
@classmethod
|
820 |
+
def load_pretrained(cls, model_path_or_config, *args, **kwargs):
|
821 |
+
kwargs.pop("config", None)
|
822 |
+
|
823 |
+
if isinstance(model_path_or_config, str):
|
824 |
+
config = AutoConfig.from_pretrained(model_path_or_config)
|
825 |
+
elif isinstance(model_path_or_config, LlavaConfig):
|
826 |
+
config = model_path_or_config
|
827 |
+
else:
|
828 |
+
raise NotImplementedError(
|
829 |
+
f"wrong type, {type(model_path_or_config)} \
|
830 |
+
{isinstance(model_path_or_config, LlavaConfig)}"
|
831 |
+
)
|
832 |
+
|
833 |
+
model_dtype = getattr(config, "model_dtype", "torch.float16")
|
834 |
+
if not hasattr(config, "model_dtype"):
|
835 |
+
warnings.warn(
|
836 |
+
"model_dtype not found in config, defaulting to torch.float16."
|
837 |
+
)
|
838 |
+
config.model_dtype = model_dtype
|
839 |
+
|
840 |
+
cfgs = get_model_config(config)
|
841 |
+
if len(cfgs) == 3:
|
842 |
+
llm_cfg, vision_tower_cfg, mm_projector_cfg = cfgs
|
843 |
+
else:
|
844 |
+
raise ValueError(
|
845 |
+
"`llm_cfg` `mm_projector_cfg` `vision_tower_cfg` not found in the config."
|
846 |
+
)
|
847 |
+
|
848 |
+
vlm = cls(config, *args, **kwargs)
|
849 |
+
# print(llm_cfg, vision_tower_cfg, mm_projector_cfg); input("DEBUG load_pretrained finish")
|
850 |
+
|
851 |
+
if (
|
852 |
+
hasattr(vlm, "llm")
|
853 |
+
or hasattr(vlm, "vision_tower")
|
854 |
+
or hasattr(vlm, "mm_projector")
|
855 |
+
):
|
856 |
+
if vlm.is_loaded:
|
857 |
+
return vlm
|
858 |
+
|
859 |
+
vlm.llm, vlm.tokenizer = build_llm_and_tokenizer(
|
860 |
+
llm_cfg, config, *args, **kwargs
|
861 |
+
)
|
862 |
+
vlm.vision_tower = build_vision_tower(vision_tower_cfg, config)
|
863 |
+
vlm.mm_projector = build_mm_projector(mm_projector_cfg, config)
|
864 |
+
|
865 |
+
cls.post_config()
|
866 |
+
cls.is_loaded = True
|
867 |
+
|
868 |
+
# FIXME(ligeng, yunhao): llm should never be none here.
|
869 |
+
assert (
|
870 |
+
vlm.llm is not None
|
871 |
+
or vlm.vision_tower is not None
|
872 |
+
or vlm.mm_projector is not None
|
873 |
+
), "At least one of the components must be instantiated."
|
874 |
+
return vlm
|
875 |
+
|
876 |
+
## FIXME we will use this function to save the model in the future
|
877 |
+
def save_pretrained(self, output_dir, state_dict=None):
|
878 |
+
if state_dict is None:
|
879 |
+
# other wise fetch from deepspeed
|
880 |
+
# state_dict = accelerator.get_state_dict(is_deepspeed_enabled)
|
881 |
+
state_dict = self.state_dict()
|
882 |
+
|
883 |
+
if getattr(self, "tokenizer", None):
|
884 |
+
self.tokenizer.save_pretrained(osp.join(output_dir, "llm"))
|
885 |
+
|
886 |
+
if self.get_llm():
|
887 |
+
print(f"saving llm to {osp.join(output_dir, 'llm')}")
|
888 |
+
self.llm.config._name_or_path = osp.join(output_dir, "llm")
|
889 |
+
llm_state_dict = OrderedDict(
|
890 |
+
{k.split("llm.")[-1]: v for k, v in state_dict.items() if "llm" in k}
|
891 |
+
)
|
892 |
+
self.llm.save_pretrained(
|
893 |
+
os.path.join(output_dir, "llm"), state_dict=llm_state_dict
|
894 |
+
)
|
895 |
+
self.config.llm_cfg = self.llm.config
|
896 |
+
|
897 |
+
if self.get_vision_tower():
|
898 |
+
print(f"saving vision_tower to {osp.join(output_dir, 'vision_tower')}")
|
899 |
+
self.vision_tower.config._name_or_path = osp.join(
|
900 |
+
output_dir, "vision_tower"
|
901 |
+
)
|
902 |
+
vision_tower_state_dict = OrderedDict(
|
903 |
+
{
|
904 |
+
k.split("vision_tower.vision_tower.")[-1]: v
|
905 |
+
for k, v in state_dict.items()
|
906 |
+
if "vision_tower" in k
|
907 |
+
}
|
908 |
+
)
|
909 |
+
self.vision_tower.vision_tower.save_pretrained(
|
910 |
+
os.path.join(output_dir, "vision_tower"),
|
911 |
+
state_dict=vision_tower_state_dict,
|
912 |
+
)
|
913 |
+
self.vision_tower.image_processor.save_pretrained(
|
914 |
+
os.path.join(output_dir, "vision_tower")
|
915 |
+
)
|
916 |
+
self.config.vision_tower_cfg = self.vision_tower.config
|
917 |
+
if hasattr(self.config.vision_tower_cfg, "auto_map"):
|
918 |
+
if "radio" not in self.get_vision_tower().__class__.__name__.lower():
|
919 |
+
delattr(self.config.vision_tower_cfg, "auto_map")
|
920 |
+
|
921 |
+
if self.get_mm_projector():
|
922 |
+
print(f"saving mm_projector to {osp.join(output_dir, 'mm_projector')}")
|
923 |
+
self.mm_projector.config._name_or_path = osp.join(
|
924 |
+
output_dir, "mm_projector"
|
925 |
+
)
|
926 |
+
mm_projector_state_dict = OrderedDict(
|
927 |
+
{
|
928 |
+
k.split("mm_projector.")[-1]: v
|
929 |
+
for k, v in state_dict.items()
|
930 |
+
if "mm_projector" in k
|
931 |
+
}
|
932 |
+
)
|
933 |
+
self.mm_projector.save_pretrained(
|
934 |
+
os.path.join(output_dir, "mm_projector"),
|
935 |
+
state_dict=mm_projector_state_dict,
|
936 |
+
)
|
937 |
+
self.config.mm_projector_cfg = self.mm_projector.config
|
938 |
+
## update and save top-level config
|
939 |
+
self.config._name_or_path = output_dir
|
940 |
+
self.config.architectures = [self.__class__.__name__]
|
941 |
+
self.config.save_pretrained(output_dir)
|
942 |
+
|
943 |
+
def get_llm(self):
|
944 |
+
llm = getattr(self, "llm", None)
|
945 |
+
if type(llm) is list:
|
946 |
+
llm = llm[0]
|
947 |
+
return llm
|
948 |
+
|
949 |
+
def get_lm_head(self):
|
950 |
+
lm_head = getattr(self.get_llm(), "lm_head", None)
|
951 |
+
return lm_head
|
952 |
+
|
953 |
+
def get_vision_tower(self):
|
954 |
+
vision_tower = getattr(self, "vision_tower", None)
|
955 |
+
if type(vision_tower) is list:
|
956 |
+
vision_tower = vision_tower[0]
|
957 |
+
return vision_tower
|
958 |
+
|
959 |
+
def get_mm_projector(self):
|
960 |
+
mm_projector = getattr(self, "mm_projector", None)
|
961 |
+
if type(mm_projector) is list:
|
962 |
+
mm_projector = mm_projector[0]
|
963 |
+
return mm_projector
|
964 |
+
|
965 |
+
def post_config(self):
|
966 |
+
self.training = self.get_llm().training
|
967 |
+
## configuration
|
968 |
+
if getattr(self.config, "llm_cfg", None) is None:
|
969 |
+
self.config.llm_cfg = self.llm.config
|
970 |
+
if getattr(self.config, "vision_tower_cfg", None) is None:
|
971 |
+
self.config.vision_tower_cfg = self.vision_tower.config
|
972 |
+
if getattr(self.config, "mm_projector_cfg", None) is None:
|
973 |
+
self.config.mm_projector_cfg = self.mm_projector.config
|
974 |
+
|
975 |
+
def freezed_module_patch(self):
|
976 |
+
"""
|
977 |
+
Huggingface will call model.train() at each training_step. To ensure the expected behaviors for modules like dropout, batchnorm, etc., we need to call model.eval() for the freezed modules.
|
978 |
+
"""
|
979 |
+
if self.training:
|
980 |
+
if self.get_llm() and not getattr(
|
981 |
+
self.config, "tune_language_model", False
|
982 |
+
):
|
983 |
+
pass
|
984 |
+
# logging.warning("Caution: Your LLM is currently in training mode, ensuring accurate gradient computation. Please be vigilant, particularly regarding BatchNorm and Dropout operations.")
|
985 |
+
if self.get_vision_tower() and not getattr(
|
986 |
+
self.config, "tune_vision_tower", False
|
987 |
+
):
|
988 |
+
self.get_vision_tower().eval()
|
989 |
+
if self.get_mm_projector() and not getattr(
|
990 |
+
self.config, "tune_mm_projector", False
|
991 |
+
):
|
992 |
+
self.get_mm_projector().eval()
|
993 |
+
|
994 |
+
def encode_images(self, images):
|
995 |
+
image_features = self.get_vision_tower()(images)
|
996 |
+
image_features = self.get_mm_projector()(image_features)
|
997 |
+
return image_features
|
998 |
+
|
999 |
+
## @yunhao: is there a better way to handle function call and attributes for llm?
|
1000 |
+
## support beam search
|
1001 |
+
def _temporary_reorder_cache(self, past_key_values, sorted_idx):
|
1002 |
+
return self.get_llm()._temporary_reorder_cache(past_key_values, sorted_idx)
|
1003 |
+
|
1004 |
+
def get_input_embeddings(self):
|
1005 |
+
return self.get_llm().get_input_embeddings()
|
1006 |
+
|
1007 |
+
def get_output_embeddings(self):
|
1008 |
+
return self.get_llm().get_output_embeddings()
|
1009 |
+
|
1010 |
+
def resize_token_embeddings(self, embed_size):
|
1011 |
+
self.get_llm().resize_token_embeddings(embed_size)
|
1012 |
+
|
1013 |
+
|
1014 |
+
# ## FIXME we will follow the convention to add a new class for CausalLM in the future
|
1015 |
+
class LlavaLlamaModel(LlavaMetaModel, PreTrainedModel):
|
1016 |
+
config_class = LlavaLlamaConfig
|
1017 |
+
main_input_name = "input_embeds"
|
1018 |
+
supports_gradient_checkpointing = True
|
1019 |
+
|
1020 |
+
def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None:
|
1021 |
+
super().__init__(config)
|
1022 |
+
return self.init_vlm(config=config, *args, **kwargs)
|
1023 |
+
|
1024 |
+
@classmethod
|
1025 |
+
def from_pretrained(
|
1026 |
+
cls,
|
1027 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
1028 |
+
*model_args,
|
1029 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
1030 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
1031 |
+
ignore_mismatched_sizes: bool = False,
|
1032 |
+
force_download: bool = False,
|
1033 |
+
local_files_only: bool = False,
|
1034 |
+
token: Optional[Union[str, bool]] = None,
|
1035 |
+
revision: str = "main",
|
1036 |
+
use_safetensors: bool = None,
|
1037 |
+
**kwargs,
|
1038 |
+
):
|
1039 |
+
if hasattr(cls, "load_pretrained"):
|
1040 |
+
return cls.load_pretrained(
|
1041 |
+
pretrained_model_name_or_path,
|
1042 |
+
*model_args,
|
1043 |
+
config=config,
|
1044 |
+
cache_dir=cache_dir,
|
1045 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
1046 |
+
force_download=force_download,
|
1047 |
+
local_files_only=local_files_only,
|
1048 |
+
token=token,
|
1049 |
+
revision=revision,
|
1050 |
+
use_safetensors=use_safetensors,
|
1051 |
+
**kwargs,
|
1052 |
+
)
|
1053 |
+
return super(LlavaLlamaModel).from_pretrained(
|
1054 |
+
pretrained_model_name_or_path,
|
1055 |
+
*model_args,
|
1056 |
+
config=config,
|
1057 |
+
cache_dir=cache_dir,
|
1058 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
1059 |
+
force_download=force_download,
|
1060 |
+
local_files_only=local_files_only,
|
1061 |
+
token=token,
|
1062 |
+
revision=revision,
|
1063 |
+
use_safetensors=use_safetensors,
|
1064 |
+
**kwargs,
|
1065 |
+
)
|
1066 |
+
|
1067 |
+
def forward(
|
1068 |
+
self,
|
1069 |
+
input_ids: torch.LongTensor = None,
|
1070 |
+
images: Optional[torch.FloatTensor] = None,
|
1071 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1072 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1073 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1074 |
+
seqlens_in_batch: Optional[torch.LongTensor] = None,
|
1075 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1076 |
+
labels: Optional[torch.LongTensor] = None,
|
1077 |
+
use_cache: Optional[bool] = None,
|
1078 |
+
output_attentions: Optional[bool] = None,
|
1079 |
+
output_hidden_states: Optional[bool] = None,
|
1080 |
+
return_dict: Optional[bool] = None,
|
1081 |
+
dpo_forward: bool = False,
|
1082 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1083 |
+
self.freezed_module_patch()
|
1084 |
+
if inputs_embeds is None:
|
1085 |
+
(
|
1086 |
+
input_ids,
|
1087 |
+
position_ids,
|
1088 |
+
attention_mask,
|
1089 |
+
past_key_values,
|
1090 |
+
inputs_embeds,
|
1091 |
+
labels,
|
1092 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
1093 |
+
input_ids, position_ids, attention_mask, past_key_values, labels, images
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
support_packing = (
|
1097 |
+
"seqlens_in_batch" in inspect.signature(self.llm.forward).parameters
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
if self.training and support_packing and not dpo_forward:
|
1101 |
+
(
|
1102 |
+
_,
|
1103 |
+
new_position_ids,
|
1104 |
+
new_attention_mask,
|
1105 |
+
_,
|
1106 |
+
new_inputs_embeds,
|
1107 |
+
new_labels,
|
1108 |
+
sorted_seqlens_in_batch,
|
1109 |
+
) = self.repack_multimodal_data(
|
1110 |
+
input_ids,
|
1111 |
+
position_ids,
|
1112 |
+
attention_mask,
|
1113 |
+
past_key_values,
|
1114 |
+
inputs_embeds,
|
1115 |
+
labels,
|
1116 |
+
)
|
1117 |
+
if sorted_seqlens_in_batch is None:
|
1118 |
+
sorted_seqlens_in_batch = seqlens_in_batch
|
1119 |
+
new_input_ids = None
|
1120 |
+
past_key_values = None
|
1121 |
+
else:
|
1122 |
+
new_attention_mask = attention_mask
|
1123 |
+
new_position_ids = position_ids
|
1124 |
+
new_inputs_embeds = inputs_embeds
|
1125 |
+
new_labels = labels
|
1126 |
+
sorted_seqlens_in_batch = attention_mask.sum(-1).int()
|
1127 |
+
new_input_ids = input_ids
|
1128 |
+
|
1129 |
+
if support_packing:
|
1130 |
+
outputs = self.llm.forward(
|
1131 |
+
input_ids=new_input_ids,
|
1132 |
+
attention_mask=new_attention_mask,
|
1133 |
+
position_ids=new_position_ids,
|
1134 |
+
past_key_values=past_key_values,
|
1135 |
+
inputs_embeds=new_inputs_embeds,
|
1136 |
+
labels=new_labels,
|
1137 |
+
use_cache=use_cache,
|
1138 |
+
output_attentions=output_attentions,
|
1139 |
+
output_hidden_states=output_hidden_states,
|
1140 |
+
return_dict=return_dict,
|
1141 |
+
seqlens_in_batch=sorted_seqlens_in_batch,
|
1142 |
+
)
|
1143 |
+
else:
|
1144 |
+
outputs = self.llm.forward(
|
1145 |
+
input_ids=new_input_ids,
|
1146 |
+
attention_mask=new_attention_mask,
|
1147 |
+
position_ids=new_position_ids,
|
1148 |
+
past_key_values=past_key_values,
|
1149 |
+
inputs_embeds=new_inputs_embeds,
|
1150 |
+
labels=new_labels,
|
1151 |
+
use_cache=use_cache,
|
1152 |
+
output_attentions=output_attentions,
|
1153 |
+
output_hidden_states=output_hidden_states,
|
1154 |
+
return_dict=return_dict,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
if dpo_forward:
|
1158 |
+
return outputs.logits, new_labels
|
1159 |
+
return outputs
|
1160 |
+
|
1161 |
+
@torch.no_grad()
|
1162 |
+
def generate(
|
1163 |
+
self,
|
1164 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
1165 |
+
images: Optional[torch.FloatTensor] = None,
|
1166 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1167 |
+
**generation_kwargs,
|
1168 |
+
):
|
1169 |
+
if images is not None:
|
1170 |
+
(
|
1171 |
+
_,
|
1172 |
+
_,
|
1173 |
+
attention_mask,
|
1174 |
+
_,
|
1175 |
+
inputs_embeds,
|
1176 |
+
_,
|
1177 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
1178 |
+
input_ids, None, attention_mask, None, None, images
|
1179 |
+
)
|
1180 |
+
else:
|
1181 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
1182 |
+
inputs_embeds = inputs_embeds.to(self.dtype)
|
1183 |
+
|
1184 |
+
outputs = self.llm.generate(
|
1185 |
+
inputs_embeds=inputs_embeds,
|
1186 |
+
attention_mask=attention_mask,
|
1187 |
+
**generation_kwargs,
|
1188 |
+
)
|
1189 |
+
return outputs
|
1190 |
+
|
1191 |
+
|
1192 |
+
# AutoConfig.register("llava_llama", LlavaLlamaConfig)
|
1193 |
+
# AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel)
|
llm/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./llm",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 2560,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 6912,
|
14 |
+
"max_position_embeddings": 4096,
|
15 |
+
"model_max_length": 4096,
|
16 |
+
"model_type": "llama",
|
17 |
+
"num_attention_heads": 20,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"num_key_value_heads": 20,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 10000.0,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"tokenizer_model_max_length": 4096,
|
27 |
+
"tokenizer_padding_side": "right",
|
28 |
+
"torch_dtype": "bfloat16",
|
29 |
+
"transformers_version": "4.36.2",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 32000
|
32 |
+
}
|
llm/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.36.2"
|
7 |
+
}
|
llm/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eed552fa9ca41f3d6fb14b59a481bf12137a37e964df0ec60f412b3ac2a8637
|
3 |
+
size 4974521464
|
llm/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b63acc16bd9be4e7f900ba7e66ddc82400c3c12d77cd5c2cfa4bc77761c0732d
|
3 |
+
size 428632856
|
llm/model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5403120640
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
297 |
+
}
|
298 |
+
}
|
llm/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
llm/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7aedb3582ecda9fa99ee9242c17a9658f6744db083ee6ebdc8fb14857f84d220
|
3 |
+
size 499723
|
llm/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 4096,
|
36 |
+
"pad_token": "<unk>",
|
37 |
+
"padding_side": "right",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
mm_projector/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./checkpoints/vila-siglip-shearedllama2.7b-r129/mm_projector",
|
3 |
+
"architectures": [
|
4 |
+
"MultimodalProjector"
|
5 |
+
],
|
6 |
+
"mm_projector_type": "mlp_downsample",
|
7 |
+
"model_type": "v2l_projector",
|
8 |
+
"torch_dtype": "bfloat16",
|
9 |
+
"transformers_version": "4.36.2"
|
10 |
+
}
|
mm_projector/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f912f7e3e83a967ef9f927ac2dd5275d3fe1bb62b2208075e4eff877fcf47ba7
|
3 |
+
size 36729360
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
utils.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# SPDX-License-Identifier: Apache-2.0
|
16 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
17 |
+
import os
|
18 |
+
import os.path as osp
|
19 |
+
|
20 |
+
from huggingface_hub import repo_exists, snapshot_download
|
21 |
+
from huggingface_hub.utils import HFValidationError, validate_repo_id
|
22 |
+
from transformers import AutoConfig, PretrainedConfig
|
23 |
+
|
24 |
+
|
25 |
+
def get_model_config(config):
|
26 |
+
default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg"]
|
27 |
+
|
28 |
+
if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2:
|
29 |
+
root_path = config._name_or_path
|
30 |
+
else:
|
31 |
+
root_path = config.resume_path
|
32 |
+
|
33 |
+
# download from huggingface
|
34 |
+
if root_path is not None and not osp.exists(root_path):
|
35 |
+
try:
|
36 |
+
valid_hf_repo = repo_exists(root_path)
|
37 |
+
except HFValidationError as e:
|
38 |
+
valid_hf_repo = False
|
39 |
+
if valid_hf_repo:
|
40 |
+
root_path = snapshot_download(root_path)
|
41 |
+
|
42 |
+
return_list = []
|
43 |
+
for key in default_keys:
|
44 |
+
cfg = getattr(config, key, None)
|
45 |
+
if isinstance(cfg, dict):
|
46 |
+
try:
|
47 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
48 |
+
except:
|
49 |
+
raise ValueError(f"Cannot find resume path in config for {key}!")
|
50 |
+
elif isinstance(cfg, PretrainedConfig):
|
51 |
+
return_list.append(os.path.join(root_path, key[:-4]))
|
52 |
+
elif isinstance(cfg, str):
|
53 |
+
return_list.append(cfg)
|
54 |
+
|
55 |
+
return return_list
|
56 |
+
|
57 |
+
|
58 |
+
def is_mm_model(model_path):
|
59 |
+
"""
|
60 |
+
Check if the model at the given path is a visual language model.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
model_path (str): The path to the model.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
bool: True if the model is an MM model, False otherwise.
|
67 |
+
"""
|
68 |
+
config = AutoConfig.from_pretrained(model_path)
|
69 |
+
architectures = config.architectures
|
70 |
+
for architecture in architectures:
|
71 |
+
if "llava" in architecture.lower():
|
72 |
+
return True
|
73 |
+
return False
|
74 |
+
|
75 |
+
|
76 |
+
def auto_upgrade(config):
|
77 |
+
cfg = AutoConfig.from_pretrained(config)
|
78 |
+
if "llava" in config and "llava" not in cfg.model_type:
|
79 |
+
assert cfg.model_type == "llama"
|
80 |
+
print(
|
81 |
+
"You are using newer LLaVA code base, while the checkpoint of v0 is from older code base."
|
82 |
+
)
|
83 |
+
print(
|
84 |
+
"You must upgrade the checkpoint to the new code base (this can be done automatically)."
|
85 |
+
)
|
86 |
+
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
|
87 |
+
if confirm.lower() in ["y", "yes"]:
|
88 |
+
print("Upgrading checkpoint...")
|
89 |
+
assert len(cfg.architectures) == 1
|
90 |
+
setattr(cfg.__class__, "model_type", "llava")
|
91 |
+
cfg.architectures[0] = "LlavaLlamaForCausalLM"
|
92 |
+
cfg.save_pretrained(config)
|
93 |
+
print("Checkpoint upgraded.")
|
94 |
+
else:
|
95 |
+
print("Checkpoint upgrade aborted.")
|
96 |
+
exit(1)
|
vision_tower/config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./vision_tower",
|
3 |
+
"architectures": [
|
4 |
+
"SiglipVisionModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"hidden_act": "gelu_pytorch_tanh",
|
8 |
+
"hidden_size": 1152,
|
9 |
+
"image_size": 384,
|
10 |
+
"intermediate_size": 4304,
|
11 |
+
"layer_norm_eps": 1e-06,
|
12 |
+
"model_type": "siglip_vision_model",
|
13 |
+
"num_attention_heads": 16,
|
14 |
+
"num_channels": 3,
|
15 |
+
"num_hidden_layers": 27,
|
16 |
+
"patch_size": 14,
|
17 |
+
"torch_dtype": "bfloat16",
|
18 |
+
"transformers_version": "4.36.2"
|
19 |
+
}
|
vision_tower/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e3764125ad000414d381fe7eb6b222be9f0f2b4c14a55b22bf68cb29647d526
|
3 |
+
size 856506120
|
vision_tower/preprocessor_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "SiglipImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"processor_class": "SiglipProcessor",
|
18 |
+
"resample": 3,
|
19 |
+
"rescale_factor": 0.00392156862745098,
|
20 |
+
"size": {
|
21 |
+
"height": 384,
|
22 |
+
"width": 384
|
23 |
+
}
|
24 |
+
}
|