File size: 3,130 Bytes
c0b8987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---

library_name: transformers
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- generated_from_trainer
model-index:
- name: adaptable-fly-271
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# adaptable-fly-271

This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1619
- Hamming Loss: 0.0439
- Zero One Loss: 0.886
- Jaccard Score: 0.8648
- Hamming Loss Optimised: 0.0437
- Hamming Loss Threshold: 0.5933
- Zero One Loss Optimised: 0.839
- Zero One Loss Threshold: 0.1736
- Jaccard Score Optimised: 0.7401
- Jaccard Score Threshold: 0.1334

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.379556445396376e-05

- train_batch_size: 20

- eval_batch_size: 20

- seed: 2024

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log        | 1.0   | 160  | 0.1853          | 0.0497       | 1.0           | 1.0           | 0.0497                 | 0.9000                 | 1.0                     | 0.9000                  | 1.0                     | 0.9000                  |
| No log        | 2.0   | 320  | 0.1830          | 0.0497       | 1.0           | 1.0           | 0.0497                 | 0.9000                 | 1.0                     | 0.9000                  | 1.0                     | 0.9000                  |
| No log        | 3.0   | 480  | 0.1690          | 0.0442       | 0.8738        | 0.8604        | 0.0456                 | 0.4236                 | 0.8588                  | 0.2889                  | 0.8410                  | 0.2889                  |
| 0.2169        | 4.0   | 640  | 0.1621          | 0.0441       | 0.8712        | 0.8560        | 0.0438                 | 0.5821                 | 0.8225                  | 0.1746                  | 0.7466                  | 0.1429                  |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3