File size: 2,875 Bytes
f8b71ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

library_name: transformers
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- generated_from_trainer
model-index:
- name: languid-roo-319
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# languid-roo-319

This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1579
- Hamming Loss: 0.0437
- Zero One Loss: 0.887
- Jaccard Score: 0.8658
- Hamming Loss Optimised: 0.0435
- Hamming Loss Threshold: 0.6974
- Zero One Loss Optimised: 0.8110
- Zero One Loss Threshold: 0.1443
- Jaccard Score Optimised: 0.7327
- Jaccard Score Threshold: 0.1460

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00011869753865906845

- train_batch_size: 20

- eval_batch_size: 20

- seed: 2024

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| No log        | 1.0   | 160  | 0.1851          | 0.0497       | 1.0           | 1.0           | 0.0497                 | 0.9000                 | 1.0                     | 0.9000                  | 1.0                     | 0.9000                  |
| No log        | 2.0   | 320  | 0.1688          | 0.0450       | 0.8775        | 0.8635        | 0.0448                 | 0.5185                 | 0.8525                  | 0.2167                  | 0.8342                  | 0.2167                  |
| No log        | 3.0   | 480  | 0.1576          | 0.0440       | 0.8725        | 0.8573        | 0.0438                 | 0.5944                 | 0.81                    | 0.1466                  | 0.7280                  | 0.1262                  |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3