--- library_name: transformers license: mit base_model: microsoft/deberta-v3-xsmall tags: - generated_from_trainer model-index: - name: languid-roo-319 results: [] --- # languid-roo-319 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1579 - Hamming Loss: 0.0437 - Zero One Loss: 0.887 - Jaccard Score: 0.8658 - Hamming Loss Optimised: 0.0435 - Hamming Loss Threshold: 0.6974 - Zero One Loss Optimised: 0.8110 - Zero One Loss Threshold: 0.1443 - Jaccard Score Optimised: 0.7327 - Jaccard Score Threshold: 0.1460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00011869753865906845 - train_batch_size: 20 - eval_batch_size: 20 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | No log | 1.0 | 160 | 0.1851 | 0.0497 | 1.0 | 1.0 | 0.0497 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | No log | 2.0 | 320 | 0.1688 | 0.0450 | 0.8775 | 0.8635 | 0.0448 | 0.5185 | 0.8525 | 0.2167 | 0.8342 | 0.2167 | | No log | 3.0 | 480 | 0.1576 | 0.0440 | 0.8725 | 0.8573 | 0.0438 | 0.5944 | 0.81 | 0.1466 | 0.7280 | 0.1262 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3