File size: 3,054 Bytes
d9adad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---

library_name: transformers
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- generated_from_trainer
model-index:
- name: resilient-rook-798
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resilient-rook-798

This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2372
- Hamming Loss: 0.0925
- Zero One Loss: 0.7925
- Jaccard Score: 0.79
- Hamming Loss Optimised: 0.0789
- Hamming Loss Threshold: 0.3524
- Zero One Loss Optimised: 0.5887
- Zero One Loss Threshold: 0.3038
- Jaccard Score Optimised: 0.5148
- Jaccard Score Threshold: 0.2378

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.0943791435964314e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 2024

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| 0.4118        | 1.0   | 100  | 0.3355          | 0.1123       | 1.0           | 1.0           | 0.1123                 | 0.9000                 | 1.0                     | 0.9000                  | 1.0                     | 0.9000                  |
| 0.308         | 2.0   | 200  | 0.2855          | 0.0938       | 0.8125        | 0.81          | 0.0929                 | 0.3525                 | 0.7488                  | 0.1661                  | 0.6086                  | 0.1537                  |
| 0.2668        | 3.0   | 300  | 0.2478          | 0.0925       | 0.7913        | 0.7888        | 0.0865                 | 0.3723                 | 0.64                    | 0.2728                  | 0.5209                  | 0.1919                  |
| 0.2417        | 4.0   | 400  | 0.2372          | 0.0925       | 0.7925        | 0.79          | 0.0789                 | 0.3524                 | 0.5887                  | 0.3038                  | 0.5148                  | 0.2378                  |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3