--- library_name: transformers license: mit base_model: microsoft/deberta-v3-xsmall tags: - generated_from_trainer model-index: - name: resilient-rook-798 results: [] --- # resilient-rook-798 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2372 - Hamming Loss: 0.0925 - Zero One Loss: 0.7925 - Jaccard Score: 0.79 - Hamming Loss Optimised: 0.0789 - Hamming Loss Threshold: 0.3524 - Zero One Loss Optimised: 0.5887 - Zero One Loss Threshold: 0.3038 - Jaccard Score Optimised: 0.5148 - Jaccard Score Threshold: 0.2378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.0943791435964314e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | 0.4118 | 1.0 | 100 | 0.3355 | 0.1123 | 1.0 | 1.0 | 0.1123 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 | | 0.308 | 2.0 | 200 | 0.2855 | 0.0938 | 0.8125 | 0.81 | 0.0929 | 0.3525 | 0.7488 | 0.1661 | 0.6086 | 0.1537 | | 0.2668 | 3.0 | 300 | 0.2478 | 0.0925 | 0.7913 | 0.7888 | 0.0865 | 0.3723 | 0.64 | 0.2728 | 0.5209 | 0.1919 | | 0.2417 | 4.0 | 400 | 0.2372 | 0.0925 | 0.7925 | 0.79 | 0.0789 | 0.3524 | 0.5887 | 0.3038 | 0.5148 | 0.2378 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3