File size: 2,540 Bytes
3e15d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---

library_name: transformers
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- generated_from_trainer
model-index:
- name: selective-skunk-437
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# selective-skunk-437

This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3511
- Hamming Loss: 0.1123
- Zero One Loss: 1.0
- Jaccard Score: 1.0
- Hamming Loss Optimised: 0.1123
- Hamming Loss Threshold: 0.9000
- Zero One Loss Optimised: 1.0
- Zero One Loss Threshold: 0.9000
- Jaccard Score Optimised: 1.0
- Jaccard Score Threshold: 0.9000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.0943791435964314e-05

- train_batch_size: 64

- eval_batch_size: 64

- seed: 2024

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|
| 0.4991        | 1.0   | 50   | 0.3808          | 0.1123       | 1.0           | 1.0           | 0.1123                 | 0.9000                 | 1.0                     | 0.9000                  | 1.0                     | 0.9000                  |
| 0.3696        | 2.0   | 100  | 0.3511          | 0.1123       | 1.0           | 1.0           | 0.1123                 | 0.9000                 | 1.0                     | 0.9000                  | 1.0                     | 0.9000                  |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3