Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1279.97 +/- 41.23
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b30b9c0bd264fe80746884539e7a2eb99c47628755804eccf05a814e271cc326
|
3 |
+
size 128991
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2f41488f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2f41489000>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2f41489090>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2f41489120>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2f414891b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2f41489240>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2f414892d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2f41489360>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2f414893f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2f41489480>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2f41489510>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2f414895a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2f4148c400>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1684768914621184205,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAigJz7aIhW+Uw0JPxjzjL3foXM+JhtNP9G4JL/0ApA/LYe9v7ltC8C0AVK/wYy7P1dUh7y1pRDARlkNvycQrz9ln64/SgcGv4zKeL51VFbAPyS7PqIU6r8qbek91cN6Pzgl179N96I+EbQAwJ3gaz/z0sc/ujIKPyCgCD+OHr2/UCGOvoT3pb4BidS+cKejvyxirz/14GO/ktihP5TJcr/R8Ac/e755PK2hwj5EsPy/tfc5P0hwoj9yKWO/QQ6mP4eGNL8jqQZAi8QNP0MHJMBqThg/TfeiPtWZ/j5s64q/Sc1aPxuGr7469u0+7SuSP9LFQr8Ssay//zVhPqAlnL/lMVI/+sLVP12ryD8OBY4+SvHRPw0Ikr2OeyI/eHHcPH0xBT/Kaga+OIXXPe0WNkDPPABArkuDPCgfez8T6nO/ak4YP033oj7Vmf4+bOuKv8lIyD5uu8S81A4QP9kEtD/0IJw+lqNcP5MoH7+9HyS/4bOOv6iOtz5k2Us/t7sjP7I0iT/poDc/Q3MiPw+uDj3tcGI/+hUnv5pMLr+gDBo/4T5LPxRnnz58Vo8/x36pPmpOGD9N96I+1Zn+Pmzrir+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAASccM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/AGpPQAAAAAG5+S/AAAAABllBz4AAAAAsXIAQAAAAAD54ba9AAAAALyD7j8AAAAANo/LvQAAAAAtcP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASf6kNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgE/5uD0AAAAAvcP3vwAAAAA2+to9AAAAABFl9T8AAAAAR3XKPQAAAAA+wNo/AAAAAHP1x70AAAAAsE35vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKNEbTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDmFew6AAAAALMY8r8AAAAA2dqzvQAAAAChhfg/AAAAAERO6LwAAAAADx/7PwAAAAB65wa+AAAAAKN+5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfno61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvSsJvQAAAACyDem/AAAAAJaUCz4AAAAAnEXxPwAAAACmLMC9AAAAANf74j8AAAAAbzbzPQAAAAA40f+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVLfscABDKMAWyUTegDjAF0lEdAsFSi+oLofXV9lChoBkdAlngghbGFSWgHTegDaAhHQLBU1M/yGzt1fZQoaAZHQJfnukXUH6doB03oA2gIR0CwV/synDR/dX2UKGgGR0CWvn2exwAEaAdN6ANoCEdAsFqoaqCHynV9lChoBkdAlDh/Tb349GgHTegDaAhHQLBbA8kleGB1fZQoaAZHQJZjnrgOz6doB03oA2gIR0CwWzInrpqzdX2UKGgGR0CUFwTKT0QLaAdN6ANoCEdAsF4vv1DjR3V9lChoBkdAkVhWg8KXwGgHTegDaAhHQLBg4/wAlv91fZQoaAZHQJEaH/echDBoB03oA2gIR0CwYT3W4EwGdX2UKGgGR0CQvj8sMAmzaAdN6ANoCEdAsGFtqGlANXV9lChoBkdAk0mBqj8DS2gHTegDaAhHQLBksVS4vvl1fZQoaAZHQJFlX8DSw4doB03oA2gIR0CwZ62BSUC8dX2UKGgGR0CSzx0+TvAoaAdN6ANoCEdAsGgHWXkYGnV9lChoBkdAkvSvxDst02gHTegDaAhHQLBoNYtQKrt1fZQoaAZHQIhTZamoBJZoB03oA2gIR0CwazykbgjydX2UKGgGR0CUG9xW1c+raAdN6ANoCEdAsG3ywosqa3V9lChoBkdAkhiMNQTEi2gHTegDaAhHQLBuTHcDbJx1fZQoaAZHQI5Aqcqe9SNoB03oA2gIR0CwbnrB0p3HdX2UKGgGR0CUwT0eU6geaAdN6ANoCEdAsHGjHtF8X3V9lChoBkdAkwufczqKQGgHTegDaAhHQLB02rFfiP11fZQoaAZHQJJTW31BdD9oB03oA2gIR0CwdUK/RE4OdX2UKGgGR0CCLmf/3nIRaAdN6ANoCEdAsHV6BClabHV9lChoBkdAlKWMJx//emgHTegDaAhHQLB4ixlg+hZ1fZQoaAZHQJYNre40/GFoB03oA2gIR0Cwe0jiCJ40dX2UKGgGR0CURnTkyULVaAdN6ANoCEdAsHujEsJ6Y3V9lChoBkdAkl2jXe3x4WgHTegDaAhHQLB70ccU/Od1fZQoaAZHQJQ6otXgccVoB03oA2gIR0Cwfs7el9BsdX2UKGgGR0CUaMH80k4WaAdN6ANoCEdAsIGI4//vOXV9lChoBkdAkIvBzijtX2gHTegDaAhHQLCB7gmqo611fZQoaAZHQIzG5Z6lchVoB03oA2gIR0Cwgh6kAPupdX2UKGgGR0CSBYDnvDxcaAdN6ANoCEdAsIWJdjXnQ3V9lChoBkdAk1VXq/ub7WgHTegDaAhHQLCITnCfpUx1fZQoaAZHQJKaMfOlfqpoB03oA2gIR0CwiKwood+5dX2UKGgGR0CIzBICEHt4aAdN6ANoCEdAsIjdJaq0dHV9lChoBkdAkIlfi1iON2gHTegDaAhHQLCL3n3cpLF1fZQoaAZHQJRxGzHCGetoB03oA2gIR0CwjouCTUy6dX2UKGgGR0CUW4DpC8e0aAdN6ANoCEdAsI7nT+ee4HV9lChoBkdAkn0JZKWcBmgHTegDaAhHQLCPFdTHbRF1fZQoaAZHQJT2Arz5GjNoB03oA2gIR0CwkmxCx/utdX2UKGgGR0CQKhwYLsrvaAdN6ANoCEdAsJVML3K0U3V9lChoBkdAlNxczuWrwWgHTegDaAhHQLCVrQwK0D51fZQoaAZHQJPyYtFrl/9oB03oA2gIR0Cwld/CQ9zPdX2UKGgGR0CSQYEal1r7aAdN6ANoCEdAsJjclOXVsnV9lChoBkdAknQ6c3EQ5GgHTegDaAhHQLCbiBXS0Bx1fZQoaAZHQJHv3LQokRloB03oA2gIR0Cwm+RVuJk5dX2UKGgGR0CTseczqKP5aAdN6ANoCEdAsJwTbah6B3V9lChoBkdAkyPQoXsPa2gHTegDaAhHQLCfJCtRvWJ1fZQoaAZHQJMR3K7qY7doB03oA2gIR0CwoeobwSamdX2UKGgGR0CQ/mFhXr+paAdN6ANoCEdAsKJJklNUO3V9lChoBkdAkSI3xWkrPWgHTegDaAhHQLCieeHBUJh1fZQoaAZHQJH/uYKIBR1oB03oA2gIR0Cwpa2I0qH5dX2UKGgGR0CUpFBp5/smaAdN6ANoCEdAsKhlic5Ke3V9lChoBkdAlIKPDtPYWmgHTegDaAhHQLCowlByCFt1fZQoaAZHQJa3nSRbKRxoB03oA2gIR0CwqPEHt4RmdX2UKGgGR0CDBLbdJrckaAdN6ANoCEdAsKvxLuhK2HV9lChoBkdAlth9xp+MImgHTegDaAhHQLCumt9x6v91fZQoaAZHQJiHrKxLTQVoB03oA2gIR0CwrvR77bcodX2UKGgGR0CX73jW07bMaAdN6ANoCEdAsK8i8Empl3V9lChoBkdAl1ofLxI8Q2gHTegDaAhHQLCyT10T1011fZQoaAZHQJNN6OCGvfVoB03oA2gIR0CwtVoEfT1DdX2UKGgGR0CUd1bILgGbaAdN6ANoCEdAsLW2teUpu3V9lChoBkdAk1v1CPZIx2gHTegDaAhHQLC15VzIV/N1fZQoaAZHQJVN3Qqqfe1oB03oA2gIR0CwuNygwoLHdX2UKGgGR0CU+fce8wpOaAdN6ANoCEdAsLuGkIomX3V9lChoBkdAlMG7pV0cO2gHTegDaAhHQLC74bpeNT91fZQoaAZHQJVPqgf2bodoB03oA2gIR0CwvBAlByCGdX2UKGgGR0CSfITWXkYGaAdN6ANoCEdAsL8HZBcAznV9lChoBkdAk5cbp/wy7GgHTegDaAhHQLDBzsk6cRV1fZQoaAZHQJar16dDpkhoB03oA2gIR0Cwwi9YW+GodX2UKGgGR0CSA4h3qzJIaAdN6ANoCEdAsMJgacZtN3V9lChoBkdAl39dWluWKWgHTegDaAhHQLDFqIBikO91fZQoaAZHQJesXJDE3sJoB03oA2gIR0CwyFzFZPl/dX2UKGgGR0CW6VDg62fDaAdN6ANoCEdAsMi3ZRKpUHV9lChoBkdAlUM4Irvsq2gHTegDaAhHQLDI5QcxTKl1fZQoaAZHQJfLmVNYbKloB03oA2gIR0Cwy+yqlxffdX2UKGgGR0CUq8O7QLNOaAdN6ANoCEdAsM6pea8Yh3V9lChoBkdAlYhJVwPy1GgHTegDaAhHQLDPBpu/Dcd1fZQoaAZHQJajjRZ2ZApoB03oA2gIR0CwzzYHs1KodX2UKGgGR0CXSY4iHIp6aAdN6ANoCEdAsNKa7TUiIXV9lChoBkdAk5OKSX+l02gHTegDaAhHQLDVXnP3SKF1fZQoaAZHQJWP9tP557hoB03oA2gIR0Cw1bqxTsIFdX2UKGgGR0CT9GdjoZAIaAdN6ANoCEdAsNXpc3VConV9lChoBkdAk+aexW1c+2gHTegDaAhHQLDY6Kp1ifB1fZQoaAZHQJX4oL0Bfa9oB03oA2gIR0Cw25ZBX0XhdX2UKGgGR0CQZvFbmlqKaAdN6ANoCEdAsNvx/DtPYXV9lChoBkdAlDAW8M/hVGgHTegDaAhHQLDcIFRHf/F1fZQoaAZHQJQlkjRlYlpoB03oA2gIR0Cw3z5swco6dX2UKGgGR0CVTEVxS5y3aAdN6ANoCEdAsOJhW6shgXV9lChoBkdAkwYeyRjjJmgHTegDaAhHQLDixa11GLF1fZQoaAZHQJXy+9L6DXhoB03oA2gIR0Cw4vuZssQNdX2UKGgGR0CVxivicXnAaAdN6ANoCEdAsOYPhhpg1HV9lChoBkdAkbtVD4QBgmgHTegDaAhHQLDowsOXmeV1fZQoaAZHQJUvI5bQkX1oB03oA2gIR0Cw6R3OW0JGdX2UKGgGR0CUyK91loUSaAdN6ANoCEdAsOlMb70nPXV9lChoBkdAlFNeinHeamgHTegDaAhHQLDsTyYoiLV1fZQoaAZHQJRie02LpA5oB03oA2gIR0Cw7wLlNlAedX2UKGgGR0CWr6P3SKFaaAdN6ANoCEdAsO9hDc/MXHV9lChoBkdAlkC1urIYFmgHTegDaAhHQLDvkWUr08N1fZQoaAZHQJYaNGZuyeJoB03oA2gIR0Cw8sRPwd8zdX2UKGgGR0CTyJ6r/82raAdN6ANoCEdAsPWLmlqJuXVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:998f9b11f4ec562142fc86ef56e1cb7051b6c59c449e8ce9f19a231358efd4e4
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55ee389c58539301839d790dfc600b8af7ceb803a9fef399a1a5719a5ba6220b
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2f41488f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2f41489000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2f41489090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2f41489120>", "_build": "<function ActorCriticPolicy._build at 0x7f2f414891b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2f41489240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2f414892d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2f41489360>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2f414893f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2f41489480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2f41489510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2f414895a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2f4148c400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684768914621184205, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAigJz7aIhW+Uw0JPxjzjL3foXM+JhtNP9G4JL/0ApA/LYe9v7ltC8C0AVK/wYy7P1dUh7y1pRDARlkNvycQrz9ln64/SgcGv4zKeL51VFbAPyS7PqIU6r8qbek91cN6Pzgl179N96I+EbQAwJ3gaz/z0sc/ujIKPyCgCD+OHr2/UCGOvoT3pb4BidS+cKejvyxirz/14GO/ktihP5TJcr/R8Ac/e755PK2hwj5EsPy/tfc5P0hwoj9yKWO/QQ6mP4eGNL8jqQZAi8QNP0MHJMBqThg/TfeiPtWZ/j5s64q/Sc1aPxuGr7469u0+7SuSP9LFQr8Ssay//zVhPqAlnL/lMVI/+sLVP12ryD8OBY4+SvHRPw0Ikr2OeyI/eHHcPH0xBT/Kaga+OIXXPe0WNkDPPABArkuDPCgfez8T6nO/ak4YP033oj7Vmf4+bOuKv8lIyD5uu8S81A4QP9kEtD/0IJw+lqNcP5MoH7+9HyS/4bOOv6iOtz5k2Us/t7sjP7I0iT/poDc/Q3MiPw+uDj3tcGI/+hUnv5pMLr+gDBo/4T5LPxRnnz58Vo8/x36pPmpOGD9N96I+1Zn+Pmzrir+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAASccM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/AGpPQAAAAAG5+S/AAAAABllBz4AAAAAsXIAQAAAAAD54ba9AAAAALyD7j8AAAAANo/LvQAAAAAtcP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASf6kNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgE/5uD0AAAAAvcP3vwAAAAA2+to9AAAAABFl9T8AAAAAR3XKPQAAAAA+wNo/AAAAAHP1x70AAAAAsE35vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKNEbTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDmFew6AAAAALMY8r8AAAAA2dqzvQAAAAChhfg/AAAAAERO6LwAAAAADx/7PwAAAAB65wa+AAAAAKN+5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfno61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvSsJvQAAAACyDem/AAAAAJaUCz4AAAAAnEXxPwAAAACmLMC9AAAAANf74j8AAAAAbzbzPQAAAAA40f+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVLfscABDKMAWyUTegDjAF0lEdAsFSi+oLofXV9lChoBkdAlngghbGFSWgHTegDaAhHQLBU1M/yGzt1fZQoaAZHQJfnukXUH6doB03oA2gIR0CwV/synDR/dX2UKGgGR0CWvn2exwAEaAdN6ANoCEdAsFqoaqCHynV9lChoBkdAlDh/Tb349GgHTegDaAhHQLBbA8kleGB1fZQoaAZHQJZjnrgOz6doB03oA2gIR0CwWzInrpqzdX2UKGgGR0CUFwTKT0QLaAdN6ANoCEdAsF4vv1DjR3V9lChoBkdAkVhWg8KXwGgHTegDaAhHQLBg4/wAlv91fZQoaAZHQJEaH/echDBoB03oA2gIR0CwYT3W4EwGdX2UKGgGR0CQvj8sMAmzaAdN6ANoCEdAsGFtqGlANXV9lChoBkdAk0mBqj8DS2gHTegDaAhHQLBksVS4vvl1fZQoaAZHQJFlX8DSw4doB03oA2gIR0CwZ62BSUC8dX2UKGgGR0CSzx0+TvAoaAdN6ANoCEdAsGgHWXkYGnV9lChoBkdAkvSvxDst02gHTegDaAhHQLBoNYtQKrt1fZQoaAZHQIhTZamoBJZoB03oA2gIR0CwazykbgjydX2UKGgGR0CUG9xW1c+raAdN6ANoCEdAsG3ywosqa3V9lChoBkdAkhiMNQTEi2gHTegDaAhHQLBuTHcDbJx1fZQoaAZHQI5Aqcqe9SNoB03oA2gIR0CwbnrB0p3HdX2UKGgGR0CUwT0eU6geaAdN6ANoCEdAsHGjHtF8X3V9lChoBkdAkwufczqKQGgHTegDaAhHQLB02rFfiP11fZQoaAZHQJJTW31BdD9oB03oA2gIR0CwdUK/RE4OdX2UKGgGR0CCLmf/3nIRaAdN6ANoCEdAsHV6BClabHV9lChoBkdAlKWMJx//emgHTegDaAhHQLB4ixlg+hZ1fZQoaAZHQJYNre40/GFoB03oA2gIR0Cwe0jiCJ40dX2UKGgGR0CURnTkyULVaAdN6ANoCEdAsHujEsJ6Y3V9lChoBkdAkl2jXe3x4WgHTegDaAhHQLB70ccU/Od1fZQoaAZHQJQ6otXgccVoB03oA2gIR0Cwfs7el9BsdX2UKGgGR0CUaMH80k4WaAdN6ANoCEdAsIGI4//vOXV9lChoBkdAkIvBzijtX2gHTegDaAhHQLCB7gmqo611fZQoaAZHQIzG5Z6lchVoB03oA2gIR0Cwgh6kAPupdX2UKGgGR0CSBYDnvDxcaAdN6ANoCEdAsIWJdjXnQ3V9lChoBkdAk1VXq/ub7WgHTegDaAhHQLCITnCfpUx1fZQoaAZHQJKaMfOlfqpoB03oA2gIR0CwiKwood+5dX2UKGgGR0CIzBICEHt4aAdN6ANoCEdAsIjdJaq0dHV9lChoBkdAkIlfi1iON2gHTegDaAhHQLCL3n3cpLF1fZQoaAZHQJRxGzHCGetoB03oA2gIR0CwjouCTUy6dX2UKGgGR0CUW4DpC8e0aAdN6ANoCEdAsI7nT+ee4HV9lChoBkdAkn0JZKWcBmgHTegDaAhHQLCPFdTHbRF1fZQoaAZHQJT2Arz5GjNoB03oA2gIR0CwkmxCx/utdX2UKGgGR0CQKhwYLsrvaAdN6ANoCEdAsJVML3K0U3V9lChoBkdAlNxczuWrwWgHTegDaAhHQLCVrQwK0D51fZQoaAZHQJPyYtFrl/9oB03oA2gIR0Cwld/CQ9zPdX2UKGgGR0CSQYEal1r7aAdN6ANoCEdAsJjclOXVsnV9lChoBkdAknQ6c3EQ5GgHTegDaAhHQLCbiBXS0Bx1fZQoaAZHQJHv3LQokRloB03oA2gIR0Cwm+RVuJk5dX2UKGgGR0CTseczqKP5aAdN6ANoCEdAsJwTbah6B3V9lChoBkdAkyPQoXsPa2gHTegDaAhHQLCfJCtRvWJ1fZQoaAZHQJMR3K7qY7doB03oA2gIR0CwoeobwSamdX2UKGgGR0CQ/mFhXr+paAdN6ANoCEdAsKJJklNUO3V9lChoBkdAkSI3xWkrPWgHTegDaAhHQLCieeHBUJh1fZQoaAZHQJH/uYKIBR1oB03oA2gIR0Cwpa2I0qH5dX2UKGgGR0CUpFBp5/smaAdN6ANoCEdAsKhlic5Ke3V9lChoBkdAlIKPDtPYWmgHTegDaAhHQLCowlByCFt1fZQoaAZHQJa3nSRbKRxoB03oA2gIR0CwqPEHt4RmdX2UKGgGR0CDBLbdJrckaAdN6ANoCEdAsKvxLuhK2HV9lChoBkdAlth9xp+MImgHTegDaAhHQLCumt9x6v91fZQoaAZHQJiHrKxLTQVoB03oA2gIR0CwrvR77bcodX2UKGgGR0CX73jW07bMaAdN6ANoCEdAsK8i8Empl3V9lChoBkdAl1ofLxI8Q2gHTegDaAhHQLCyT10T1011fZQoaAZHQJNN6OCGvfVoB03oA2gIR0CwtVoEfT1DdX2UKGgGR0CUd1bILgGbaAdN6ANoCEdAsLW2teUpu3V9lChoBkdAk1v1CPZIx2gHTegDaAhHQLC15VzIV/N1fZQoaAZHQJVN3Qqqfe1oB03oA2gIR0CwuNygwoLHdX2UKGgGR0CU+fce8wpOaAdN6ANoCEdAsLuGkIomX3V9lChoBkdAlMG7pV0cO2gHTegDaAhHQLC74bpeNT91fZQoaAZHQJVPqgf2bodoB03oA2gIR0CwvBAlByCGdX2UKGgGR0CSfITWXkYGaAdN6ANoCEdAsL8HZBcAznV9lChoBkdAk5cbp/wy7GgHTegDaAhHQLDBzsk6cRV1fZQoaAZHQJar16dDpkhoB03oA2gIR0Cwwi9YW+GodX2UKGgGR0CSA4h3qzJIaAdN6ANoCEdAsMJgacZtN3V9lChoBkdAl39dWluWKWgHTegDaAhHQLDFqIBikO91fZQoaAZHQJesXJDE3sJoB03oA2gIR0CwyFzFZPl/dX2UKGgGR0CW6VDg62fDaAdN6ANoCEdAsMi3ZRKpUHV9lChoBkdAlUM4Irvsq2gHTegDaAhHQLDI5QcxTKl1fZQoaAZHQJfLmVNYbKloB03oA2gIR0Cwy+yqlxffdX2UKGgGR0CUq8O7QLNOaAdN6ANoCEdAsM6pea8Yh3V9lChoBkdAlYhJVwPy1GgHTegDaAhHQLDPBpu/Dcd1fZQoaAZHQJajjRZ2ZApoB03oA2gIR0CwzzYHs1KodX2UKGgGR0CXSY4iHIp6aAdN6ANoCEdAsNKa7TUiIXV9lChoBkdAk5OKSX+l02gHTegDaAhHQLDVXnP3SKF1fZQoaAZHQJWP9tP557hoB03oA2gIR0Cw1bqxTsIFdX2UKGgGR0CT9GdjoZAIaAdN6ANoCEdAsNXpc3VConV9lChoBkdAk+aexW1c+2gHTegDaAhHQLDY6Kp1ifB1fZQoaAZHQJX4oL0Bfa9oB03oA2gIR0Cw25ZBX0XhdX2UKGgGR0CQZvFbmlqKaAdN6ANoCEdAsNvx/DtPYXV9lChoBkdAlDAW8M/hVGgHTegDaAhHQLDcIFRHf/F1fZQoaAZHQJQlkjRlYlpoB03oA2gIR0Cw3z5swco6dX2UKGgGR0CVTEVxS5y3aAdN6ANoCEdAsOJhW6shgXV9lChoBkdAkwYeyRjjJmgHTegDaAhHQLDixa11GLF1fZQoaAZHQJXy+9L6DXhoB03oA2gIR0Cw4vuZssQNdX2UKGgGR0CVxivicXnAaAdN6ANoCEdAsOYPhhpg1HV9lChoBkdAkbtVD4QBgmgHTegDaAhHQLDowsOXmeV1fZQoaAZHQJUvI5bQkX1oB03oA2gIR0Cw6R3OW0JGdX2UKGgGR0CUyK91loUSaAdN6ANoCEdAsOlMb70nPXV9lChoBkdAlFNeinHeamgHTegDaAhHQLDsTyYoiLV1fZQoaAZHQJRie02LpA5oB03oA2gIR0Cw7wLlNlAedX2UKGgGR0CWr6P3SKFaaAdN6ANoCEdAsO9hDc/MXHV9lChoBkdAlkC1urIYFmgHTegDaAhHQLDvkWUr08N1fZQoaAZHQJYaNGZuyeJoB03oA2gIR0Cw8sRPwd8zdX2UKGgGR0CTyJ6r/82raAdN6ANoCEdAsPWLmlqJuXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e58edd6de90a9d115dd693d924e7e6626063431652ee80d2fc80d8f0aabcd53f
|
3 |
+
size 1034756
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1279.9652258940507, "std_reward": 41.227907732376735, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-22T16:40:41.146989"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7782eba9322d48175ba7018aa423ec5cc2704d97ec133f9fec89cb7533e46722
|
3 |
+
size 2176
|