{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2f4148c400>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684768914621184205, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAigJz7aIhW+Uw0JPxjzjL3foXM+JhtNP9G4JL/0ApA/LYe9v7ltC8C0AVK/wYy7P1dUh7y1pRDARlkNvycQrz9ln64/SgcGv4zKeL51VFbAPyS7PqIU6r8qbek91cN6Pzgl179N96I+EbQAwJ3gaz/z0sc/ujIKPyCgCD+OHr2/UCGOvoT3pb4BidS+cKejvyxirz/14GO/ktihP5TJcr/R8Ac/e755PK2hwj5EsPy/tfc5P0hwoj9yKWO/QQ6mP4eGNL8jqQZAi8QNP0MHJMBqThg/TfeiPtWZ/j5s64q/Sc1aPxuGr7469u0+7SuSP9LFQr8Ssay//zVhPqAlnL/lMVI/+sLVP12ryD8OBY4+SvHRPw0Ikr2OeyI/eHHcPH0xBT/Kaga+OIXXPe0WNkDPPABArkuDPCgfez8T6nO/ak4YP033oj7Vmf4+bOuKv8lIyD5uu8S81A4QP9kEtD/0IJw+lqNcP5MoH7+9HyS/4bOOv6iOtz5k2Us/t7sjP7I0iT/poDc/Q3MiPw+uDj3tcGI/+hUnv5pMLr+gDBo/4T5LPxRnnz58Vo8/x36pPmpOGD9N96I+1Zn+Pmzrir+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAASccM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/AGpPQAAAAAG5+S/AAAAABllBz4AAAAAsXIAQAAAAAD54ba9AAAAALyD7j8AAAAANo/LvQAAAAAtcP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASf6kNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgE/5uD0AAAAAvcP3vwAAAAA2+to9AAAAABFl9T8AAAAAR3XKPQAAAAA+wNo/AAAAAHP1x70AAAAAsE35vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKNEbTQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDmFew6AAAAALMY8r8AAAAA2dqzvQAAAAChhfg/AAAAAERO6LwAAAAADx/7PwAAAAB65wa+AAAAAKN+5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfno61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvSsJvQAAAACyDem/AAAAAJaUCz4AAAAAnEXxPwAAAACmLMC9AAAAANf74j8AAAAAbzbzPQAAAAA40f+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVLfscABDKMAWyUTegDjAF0lEdAsFSi+oLofXV9lChoBkdAlngghbGFSWgHTegDaAhHQLBU1M/yGzt1fZQoaAZHQJfnukXUH6doB03oA2gIR0CwV/synDR/dX2UKGgGR0CWvn2exwAEaAdN6ANoCEdAsFqoaqCHynV9lChoBkdAlDh/Tb349GgHTegDaAhHQLBbA8kleGB1fZQoaAZHQJZjnrgOz6doB03oA2gIR0CwWzInrpqzdX2UKGgGR0CUFwTKT0QLaAdN6ANoCEdAsF4vv1DjR3V9lChoBkdAkVhWg8KXwGgHTegDaAhHQLBg4/wAlv91fZQoaAZHQJEaH/echDBoB03oA2gIR0CwYT3W4EwGdX2UKGgGR0CQvj8sMAmzaAdN6ANoCEdAsGFtqGlANXV9lChoBkdAk0mBqj8DS2gHTegDaAhHQLBksVS4vvl1fZQoaAZHQJFlX8DSw4doB03oA2gIR0CwZ62BSUC8dX2UKGgGR0CSzx0+TvAoaAdN6ANoCEdAsGgHWXkYGnV9lChoBkdAkvSvxDst02gHTegDaAhHQLBoNYtQKrt1fZQoaAZHQIhTZamoBJZoB03oA2gIR0CwazykbgjydX2UKGgGR0CUG9xW1c+raAdN6ANoCEdAsG3ywosqa3V9lChoBkdAkhiMNQTEi2gHTegDaAhHQLBuTHcDbJx1fZQoaAZHQI5Aqcqe9SNoB03oA2gIR0CwbnrB0p3HdX2UKGgGR0CUwT0eU6geaAdN6ANoCEdAsHGjHtF8X3V9lChoBkdAkwufczqKQGgHTegDaAhHQLB02rFfiP11fZQoaAZHQJJTW31BdD9oB03oA2gIR0CwdUK/RE4OdX2UKGgGR0CCLmf/3nIRaAdN6ANoCEdAsHV6BClabHV9lChoBkdAlKWMJx//emgHTegDaAhHQLB4ixlg+hZ1fZQoaAZHQJYNre40/GFoB03oA2gIR0Cwe0jiCJ40dX2UKGgGR0CURnTkyULVaAdN6ANoCEdAsHujEsJ6Y3V9lChoBkdAkl2jXe3x4WgHTegDaAhHQLB70ccU/Od1fZQoaAZHQJQ6otXgccVoB03oA2gIR0Cwfs7el9BsdX2UKGgGR0CUaMH80k4WaAdN6ANoCEdAsIGI4//vOXV9lChoBkdAkIvBzijtX2gHTegDaAhHQLCB7gmqo611fZQoaAZHQIzG5Z6lchVoB03oA2gIR0Cwgh6kAPupdX2UKGgGR0CSBYDnvDxcaAdN6ANoCEdAsIWJdjXnQ3V9lChoBkdAk1VXq/ub7WgHTegDaAhHQLCITnCfpUx1fZQoaAZHQJKaMfOlfqpoB03oA2gIR0CwiKwood+5dX2UKGgGR0CIzBICEHt4aAdN6ANoCEdAsIjdJaq0dHV9lChoBkdAkIlfi1iON2gHTegDaAhHQLCL3n3cpLF1fZQoaAZHQJRxGzHCGetoB03oA2gIR0CwjouCTUy6dX2UKGgGR0CUW4DpC8e0aAdN6ANoCEdAsI7nT+ee4HV9lChoBkdAkn0JZKWcBmgHTegDaAhHQLCPFdTHbRF1fZQoaAZHQJT2Arz5GjNoB03oA2gIR0CwkmxCx/utdX2UKGgGR0CQKhwYLsrvaAdN6ANoCEdAsJVML3K0U3V9lChoBkdAlNxczuWrwWgHTegDaAhHQLCVrQwK0D51fZQoaAZHQJPyYtFrl/9oB03oA2gIR0Cwld/CQ9zPdX2UKGgGR0CSQYEal1r7aAdN6ANoCEdAsJjclOXVsnV9lChoBkdAknQ6c3EQ5GgHTegDaAhHQLCbiBXS0Bx1fZQoaAZHQJHv3LQokRloB03oA2gIR0Cwm+RVuJk5dX2UKGgGR0CTseczqKP5aAdN6ANoCEdAsJwTbah6B3V9lChoBkdAkyPQoXsPa2gHTegDaAhHQLCfJCtRvWJ1fZQoaAZHQJMR3K7qY7doB03oA2gIR0CwoeobwSamdX2UKGgGR0CQ/mFhXr+paAdN6ANoCEdAsKJJklNUO3V9lChoBkdAkSI3xWkrPWgHTegDaAhHQLCieeHBUJh1fZQoaAZHQJH/uYKIBR1oB03oA2gIR0Cwpa2I0qH5dX2UKGgGR0CUpFBp5/smaAdN6ANoCEdAsKhlic5Ke3V9lChoBkdAlIKPDtPYWmgHTegDaAhHQLCowlByCFt1fZQoaAZHQJa3nSRbKRxoB03oA2gIR0CwqPEHt4RmdX2UKGgGR0CDBLbdJrckaAdN6ANoCEdAsKvxLuhK2HV9lChoBkdAlth9xp+MImgHTegDaAhHQLCumt9x6v91fZQoaAZHQJiHrKxLTQVoB03oA2gIR0CwrvR77bcodX2UKGgGR0CX73jW07bMaAdN6ANoCEdAsK8i8Empl3V9lChoBkdAl1ofLxI8Q2gHTegDaAhHQLCyT10T1011fZQoaAZHQJNN6OCGvfVoB03oA2gIR0CwtVoEfT1DdX2UKGgGR0CUd1bILgGbaAdN6ANoCEdAsLW2teUpu3V9lChoBkdAk1v1CPZIx2gHTegDaAhHQLC15VzIV/N1fZQoaAZHQJVN3Qqqfe1oB03oA2gIR0CwuNygwoLHdX2UKGgGR0CU+fce8wpOaAdN6ANoCEdAsLuGkIomX3V9lChoBkdAlMG7pV0cO2gHTegDaAhHQLC74bpeNT91fZQoaAZHQJVPqgf2bodoB03oA2gIR0CwvBAlByCGdX2UKGgGR0CSfITWXkYGaAdN6ANoCEdAsL8HZBcAznV9lChoBkdAk5cbp/wy7GgHTegDaAhHQLDBzsk6cRV1fZQoaAZHQJar16dDpkhoB03oA2gIR0Cwwi9YW+GodX2UKGgGR0CSA4h3qzJIaAdN6ANoCEdAsMJgacZtN3V9lChoBkdAl39dWluWKWgHTegDaAhHQLDFqIBikO91fZQoaAZHQJesXJDE3sJoB03oA2gIR0CwyFzFZPl/dX2UKGgGR0CW6VDg62fDaAdN6ANoCEdAsMi3ZRKpUHV9lChoBkdAlUM4Irvsq2gHTegDaAhHQLDI5QcxTKl1fZQoaAZHQJfLmVNYbKloB03oA2gIR0Cwy+yqlxffdX2UKGgGR0CUq8O7QLNOaAdN6ANoCEdAsM6pea8Yh3V9lChoBkdAlYhJVwPy1GgHTegDaAhHQLDPBpu/Dcd1fZQoaAZHQJajjRZ2ZApoB03oA2gIR0CwzzYHs1KodX2UKGgGR0CXSY4iHIp6aAdN6ANoCEdAsNKa7TUiIXV9lChoBkdAk5OKSX+l02gHTegDaAhHQLDVXnP3SKF1fZQoaAZHQJWP9tP557hoB03oA2gIR0Cw1bqxTsIFdX2UKGgGR0CT9GdjoZAIaAdN6ANoCEdAsNXpc3VConV9lChoBkdAk+aexW1c+2gHTegDaAhHQLDY6Kp1ifB1fZQoaAZHQJX4oL0Bfa9oB03oA2gIR0Cw25ZBX0XhdX2UKGgGR0CQZvFbmlqKaAdN6ANoCEdAsNvx/DtPYXV9lChoBkdAlDAW8M/hVGgHTegDaAhHQLDcIFRHf/F1fZQoaAZHQJQlkjRlYlpoB03oA2gIR0Cw3z5swco6dX2UKGgGR0CVTEVxS5y3aAdN6ANoCEdAsOJhW6shgXV9lChoBkdAkwYeyRjjJmgHTegDaAhHQLDixa11GLF1fZQoaAZHQJXy+9L6DXhoB03oA2gIR0Cw4vuZssQNdX2UKGgGR0CVxivicXnAaAdN6ANoCEdAsOYPhhpg1HV9lChoBkdAkbtVD4QBgmgHTegDaAhHQLDowsOXmeV1fZQoaAZHQJUvI5bQkX1oB03oA2gIR0Cw6R3OW0JGdX2UKGgGR0CUyK91loUSaAdN6ANoCEdAsOlMb70nPXV9lChoBkdAlFNeinHeamgHTegDaAhHQLDsTyYoiLV1fZQoaAZHQJRie02LpA5oB03oA2gIR0Cw7wLlNlAedX2UKGgGR0CWr6P3SKFaaAdN6ANoCEdAsO9hDc/MXHV9lChoBkdAlkC1urIYFmgHTegDaAhHQLDvkWUr08N1fZQoaAZHQJYaNGZuyeJoB03oA2gIR0Cw8sRPwd8zdX2UKGgGR0CTyJ6r/82raAdN6ANoCEdAsPWLmlqJuXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.24.3", "Gym": "0.21.0"}}