File size: 15,586 Bytes
6d51cb1
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2f414896c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2f4148c540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684774895754930380, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAEKW/PiIJrLuTSA8/EKW/PiIJrLuTSA8/EKW/PiIJrLuTSA8/EKW/PiIJrLuTSA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGT7PP0gBjj8gW64/m9vcPhwZor5WA7A+o8wXv3EcCDxV+qI/Eq32vGaAW74tWTu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAQpb8+Igmsu5NIDz/IGSa7khBlO2Y9x7sQpb8+Igmsu5NIDz/IGSa7khBlO2Y9x7sQpb8+Igmsu5NIDz/IGSa7khBlO2Y9x7sQpb8+Igmsu5NIDz/IGSa7khBlO2Y9x7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3743062  -0.00525011  0.55970114]\n [ 0.3743062  -0.00525011  0.55970114]\n [ 0.3743062  -0.00525011  0.55970114]\n [ 0.3743062  -0.00525011  0.55970114]]", "desired_goal": "[[ 1.6190826   1.1094141   1.3621559 ]\n [ 0.43136296 -0.31659782  0.34377545]\n [-0.59296626  0.00830756  1.2732645 ]\n [-0.03011182 -0.21435699 -0.73182946]]", "observation": "[[ 0.3743062  -0.00525011  0.55970114 -0.0025345   0.00349525 -0.00608032]\n [ 0.3743062  -0.00525011  0.55970114 -0.0025345   0.00349525 -0.00608032]\n [ 0.3743062  -0.00525011  0.55970114 -0.0025345   0.00349525 -0.00608032]\n [ 0.3743062  -0.00525011  0.55970114 -0.0025345   0.00349525 -0.00608032]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiI72Pdkh3z0Wwjw+9sRMvcdO/L1Esn0+VyEDPiu5S72wW2o+oA36vcm+0T2n1Pc8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.12038904  0.10895128  0.18433413]\n [-0.04999252 -0.12319713  0.24775034]\n [ 0.12805687 -0.04973714  0.22886539]\n [-0.1220963   0.10241468  0.03025277]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVkYjn1ccAsCUhpRSlIwBbJRLMowBdJRHQKJ6f2nsLOR1fZQoaAZoCWgPQwhiD+1jBX8GwJSGlFKUaBVLMmgWR0CiejprULDydX2UKGgGaAloD0MIuXGL+bmhDMCUhpRSlGgVSzJoFkdAonn3EsJ6Y3V9lChoBmgJaA9DCGAhc2VQzQPAlIaUUpRoFUsyaBZHQKJ5s9pyp711fZQoaAZoCWgPQwg/Gk6Zm68HwJSGlFKUaBVLMmgWR0Cie1HxBmf5dX2UKGgGaAloD0MIv+5054nHAMCUhpRSlGgVSzJoFkdAonsNMVUMonV9lChoBmgJaA9DCOgU5Gcj1wvAlIaUUpRoFUsyaBZHQKJ6ybTc6/91fZQoaAZoCWgPQwjPaoE9JrIJwJSGlFKUaBVLMmgWR0CieoagdwNtdX2UKGgGaAloD0MI/I123PB7BcCUhpRSlGgVSzJoFkdAonwmearmyXV9lChoBmgJaA9DCMe9+Q0TTQbAlIaUUpRoFUsyaBZHQKJ74YPXkHV1fZQoaAZoCWgPQwh2pPrOLyoEwJSGlFKUaBVLMmgWR0Cie54WDYh/dX2UKGgGaAloD0MIr3srEhOUAsCUhpRSlGgVSzJoFkdAonta704BFXV9lChoBmgJaA9DCH41BwjmKPy/lIaUUpRoFUsyaBZHQKJ8+M9bHIZ1fZQoaAZoCWgPQwhnnIaowr8CwJSGlFKUaBVLMmgWR0CifLQV0tAcdX2UKGgGaAloD0MIPpRoyePpBcCUhpRSlGgVSzJoFkdAonxw4Otnw3V9lChoBmgJaA9DCH+g3LbvcQTAlIaUUpRoFUsyaBZHQKJ8LeZXuE51fZQoaAZoCWgPQwg4ukp313kEwJSGlFKUaBVLMmgWR0CifdagmJFcdX2UKGgGaAloD0MIAd2XM9tFEMCUhpRSlGgVSzJoFkdAon2RxvNu+HV9lChoBmgJaA9DCIKOVrWkAwTAlIaUUpRoFUsyaBZHQKJ9Tq46Oo51fZQoaAZoCWgPQwj7A+W2fe8AwJSGlFKUaBVLMmgWR0CifQuGsV+JdX2UKGgGaAloD0MIixh2GJO+AsCUhpRSlGgVSzJoFkdAon6yWiUPhHV9lChoBmgJaA9DCAVQjCyZYwTAlIaUUpRoFUsyaBZHQKJ+bXe3x4J1fZQoaAZoCWgPQwh/3795cYIJwJSGlFKUaBVLMmgWR0CifioXj2i+dX2UKGgGaAloD0MICttPxvhQB8CUhpRSlGgVSzJoFkdAon3m6RQrMHV9lChoBmgJaA9DCOTWpNsSWQfAlIaUUpRoFUsyaBZHQKJ/hKp1ifB1fZQoaAZoCWgPQwjEP2zp0ZQFwJSGlFKUaBVLMmgWR0Cifz/O2RaHdX2UKGgGaAloD0MIBfnZyHVzAsCUhpRSlGgVSzJoFkdAon78ZvUBn3V9lChoBmgJaA9DCIpZL4Zy4gDAlIaUUpRoFUsyaBZHQKJ+uXw9aEB1fZQoaAZoCWgPQwjScTWyK00EwJSGlFKUaBVLMmgWR0CigFz0Yj0MdX2UKGgGaAloD0MIBWwHI/ZpB8CUhpRSlGgVSzJoFkdAooAX/o7muHV9lChoBmgJaA9DCLEyGvm8QgPAlIaUUpRoFUsyaBZHQKJ/1I9TxXp1fZQoaAZoCWgPQwivzjEge50DwJSGlFKUaBVLMmgWR0Cif5FGG21EdX2UKGgGaAloD0MInNzvUBToAsCUhpRSlGgVSzJoFkdAooE4kxASnXV9lChoBmgJaA9DCLWn5JzYw/2/lIaUUpRoFUsyaBZHQKKA88q4H5d1fZQoaAZoCWgPQwhqaAOwAXEDwJSGlFKUaBVLMmgWR0CigLBR64UfdX2UKGgGaAloD0MI1/m3y379CMCUhpRSlGgVSzJoFkdAooBtFz+3pnV9lChoBmgJaA9DCDwUBfpEPgPAlIaUUpRoFUsyaBZHQKKCFSRbKRx1fZQoaAZoCWgPQwjxEMZP4x4JwJSGlFKUaBVLMmgWR0CigdCG34KydX2UKGgGaAloD0MImbnA5bFGBcCUhpRSlGgVSzJoFkdAooGNmxt52XV9lChoBmgJaA9DCFMHeT2YtAXAlIaUUpRoFUsyaBZHQKKBSnuRcNZ1fZQoaAZoCWgPQwiQ3QVKCmwEwJSGlFKUaBVLMmgWR0CigukxZdOZdX2UKGgGaAloD0MIyAxUxr8PAcCUhpRSlGgVSzJoFkdAooKkUAT7EnV9lChoBmgJaA9DCLyVJTrLDAbAlIaUUpRoFUsyaBZHQKKCYPxx1gZ1fZQoaAZoCWgPQwhHq1rSUS4GwJSGlFKUaBVLMmgWR0Cigh4Jmdy1dX2UKGgGaAloD0MITP+SVKY4AsCUhpRSlGgVSzJoFkdAooPNPi1iOXV9lChoBmgJaA9DCGpQNA9gkQbAlIaUUpRoFUsyaBZHQKKDiH3UQTV1fZQoaAZoCWgPQwjfNH12wBUBwJSGlFKUaBVLMmgWR0Cig0UM5OrRdX2UKGgGaAloD0MIxAsiUtMOAsCUhpRSlGgVSzJoFkdAooMB2KVIJHV9lChoBmgJaA9DCJbRyOcVLwPAlIaUUpRoFUsyaBZHQKKEqXVLBbh1fZQoaAZoCWgPQwhvgm+aPjsOwJSGlFKUaBVLMmgWR0CihGTdcjZ+dX2UKGgGaAloD0MIqKs7FtuEAsCUhpRSlGgVSzJoFkdAooQhfrrxAnV9lChoBmgJaA9DCPT7/s2LMwHAlIaUUpRoFUsyaBZHQKKD3kJ8fFJ1fZQoaAZoCWgPQwiWXTC45g4DwJSGlFKUaBVLMmgWR0CihYXOGCZndX2UKGgGaAloD0MIAkht4uR+CcCUhpRSlGgVSzJoFkdAooVA7DEWI3V9lChoBmgJaA9DCH12wHXFjAXAlIaUUpRoFUsyaBZHQKKE/aXa8Hx1fZQoaAZoCWgPQwjboswGmST+v5SGlFKUaBVLMmgWR0CihLqTjebedX2UKGgGaAloD0MIHR8tzhgm/b+UhpRSlGgVSzJoFkdAooZqzE74jHV9lChoBmgJaA9DCKhxb37DpADAlIaUUpRoFUsyaBZHQKKGJeE7GNt1fZQoaAZoCWgPQwhVZ7XAHtP9v5SGlFKUaBVLMmgWR0CiheJ+MIeHdX2UKGgGaAloD0MIZryt9NpsCcCUhpRSlGgVSzJoFkdAooWfbdrO7nV9lChoBmgJaA9DCJEJ+DWSxAPAlIaUUpRoFUsyaBZHQKKHTP7el9B1fZQoaAZoCWgPQwhkdavnpPf7v5SGlFKUaBVLMmgWR0CihwgmReTndX2UKGgGaAloD0MIcCU7NgJRBMCUhpRSlGgVSzJoFkdAoobEyFfzBnV9lChoBmgJaA9DCOs3E9OFGAHAlIaUUpRoFUsyaBZHQKKGgbZvkzZ1fZQoaAZoCWgPQwjXGHRC6OACwJSGlFKUaBVLMmgWR0CiiCyVv/BFdX2UKGgGaAloD0MIaMu5FFeVBcCUhpRSlGgVSzJoFkdAoofnvv0AcXV9lChoBmgJaA9DCGiyf54GbAPAlIaUUpRoFUsyaBZHQKKHpIGyHEd1fZQoaAZoCWgPQwhEpnwIquYGwJSGlFKUaBVLMmgWR0Cih2FzuF6BdX2UKGgGaAloD0MIKUF/oUeM+L+UhpRSlGgVSzJoFkdAookkGorFwXV9lChoBmgJaA9DCEoKLIApownAlIaUUpRoFUsyaBZHQKKI32W6bvx1fZQoaAZoCWgPQwiKr3YU54gCwJSGlFKUaBVLMmgWR0CiiJwa72+PdX2UKGgGaAloD0MIM40mF2PABMCUhpRSlGgVSzJoFkdAoohZJyyUtHV9lChoBmgJaA9DCNeKNse5jQDAlIaUUpRoFUsyaBZHQKKJ/jbSJCV1fZQoaAZoCWgPQwgmGw+22C0DwJSGlFKUaBVLMmgWR0CiibluNxVAdX2UKGgGaAloD0MI5+CZ0CTx/b+UhpRSlGgVSzJoFkdAool2BOHnEHV9lChoBmgJaA9DCOxQTUnWQQDAlIaUUpRoFUsyaBZHQKKJMucMEzR1fZQoaAZoCWgPQwiQvHMoQxUIwJSGlFKUaBVLMmgWR0Ciit2a+evqdX2UKGgGaAloD0MI4C2QoPixDMCUhpRSlGgVSzJoFkdAooqY/qxC6nV9lChoBmgJaA9DCFVRvMraJgTAlIaUUpRoFUsyaBZHQKKKVaIvalF1fZQoaAZoCWgPQwgbS1gbY2cKwJSGlFKUaBVLMmgWR0CiihJ5/smfdX2UKGgGaAloD0MI5GiOrPwyB8CUhpRSlGgVSzJoFkdAoovBVuJk5XV9lChoBmgJaA9DCEW3XtODshDAlIaUUpRoFUsyaBZHQKKLfITXarZ1fZQoaAZoCWgPQwhSfecXJYgMwJSGlFKUaBVLMmgWR0Ciizla8pTddX2UKGgGaAloD0MITKWfcHYLAsCUhpRSlGgVSzJoFkdAoor2Wa+ev3V9lChoBmgJaA9DCJdSl4xjdBHAlIaUUpRoFUsyaBZHQKKMo2iL2pR1fZQoaAZoCWgPQwhyNEdWflkFwJSGlFKUaBVLMmgWR0CijF6CUX54dX2UKGgGaAloD0MIlx3iH7ZUCcCUhpRSlGgVSzJoFkdAoowbKvFFUnV9lChoBmgJaA9DCE8iwr8IGgXAlIaUUpRoFUsyaBZHQKKL2Bkqc3F1fZQoaAZoCWgPQwjc9dIUAU4DwJSGlFKUaBVLMmgWR0CijYvmPo3adX2UKGgGaAloD0MIlIjwL4IGBsCUhpRSlGgVSzJoFkdAoo1HE87p3XV9lChoBmgJaA9DCJepSfCGVATAlIaUUpRoFUsyaBZHQKKNA6/Zdv91fZQoaAZoCWgPQwg2zNB4ImgLwJSGlFKUaBVLMmgWR0CijMCY9gWrdX2UKGgGaAloD0MIWmWmtP5W/r+UhpRSlGgVSzJoFkdAoo5heokzGnV9lChoBmgJaA9DCG5MT1jiIQrAlIaUUpRoFUsyaBZHQKKOHI7Njb11fZQoaAZoCWgPQwi8H7dfPtkAwJSGlFKUaBVLMmgWR0CijdkQ5FPSdX2UKGgGaAloD0MIz4dnCTJCB8CUhpRSlGgVSzJoFkdAoo2V2ovSMXV9lChoBmgJaA9DCC7KbJBJZgXAlIaUUpRoFUsyaBZHQKKPPJUYKpl1fZQoaAZoCWgPQwghIcoXtLAKwJSGlFKUaBVLMmgWR0CijvemNzbOdX2UKGgGaAloD0MIDLCPTl15CcCUhpRSlGgVSzJoFkdAoo60SAYpD3V9lChoBmgJaA9DCA9+4gD6HQfAlIaUUpRoFUsyaBZHQKKOcYiPhhp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.24.3", "Gym": "0.21.0"}}