Commit
·
68e2e4c
1
Parent(s):
96739da
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1495.90 +/- 315.48
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bb6e67f6afde225547094af4ca4f34dc4cb9fcbbd161ad88fc3bb89c3a1fc5d
|
3 |
+
size 129261
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bc54e9ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bc54e9f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bc54ec040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bc54ec0d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9bc54ec160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9bc54ec1f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9bc54ec280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bc54ec310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9bc54ec3a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bc54ec430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bc54ec4c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bc54ec550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9bc54eaa40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679551722489874639,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP5mBj8QadQ9GyoEPzEvnD9YyJY/jtidPsi4ND9CCa+/7soQP5W+2D42B1m/JBPJP9Y/Vz5NVMI/nwzSPj36jD4U3pQ/xpeEvq6SHz+/V469KlZAv5lXXj3Hiko/aZlZv7ihlL/HXrY+p/DAvx/hbD9rIAw9aCyNvgMN1z5jlYw+t+AbwGn7Fj/dyMO+QMtTv/TbR7/ZDLa9NohUP3WEG71G2WW+uI8IwHJVVD9WtYM9fs09v5TD078CpwA/6OJ+PodDP78mmxQ8L/NEv/Jn4Tvhdlw/x162PsvVKT/+VIq/e3ERv8Yd9D5e+AE/LGIFvTQ9FEDI5+6+IxHWPR3fVDwc/+8+R0SoPwaW8L13LUM/HtqfPx/vC0AAQgM/piyPP7fNlz+ACmpAoGQhP5RlFTxG4Ea9qQz3PxoiDz2hzDU+uKGUv8detj6n8MC/H+FsP9SecD/nsRq/a+N7PgmpnD6O3ks+coXQPrNmYT+K5Wy/JpU8P3/lRMDQUCM/K8sEwAzxOj8mLTK/4sVvvZm6PT99sp4/UoflvtUWIT+rYDc+Gk9rPm+YMMCt0LI/K+0tPrihlL/HXrY+p/DAvx/hbD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACIPL81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXuaDPAAAAACw1eO/AAAAAJhuzj0AAAAAPkvgPwAAAACL5vk9AAAAAPn76D8AAAAAkI4NPgAAAABRbPO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcl6MNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGwx7L0AAAAA9GL8vwAAAADFfPs8AAAAAHai+j8AAAAAfcSJvQAAAADtgvw/AAAAAKm2z70AAAAAT+X5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN5egzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALlnC9AAAAAMOh878AAAAAJhy5vAAAAAAxufA/AAAAAIzjED4AAAAA9PX1PwAAAAANzlY7AAAAABWq6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNKpK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEBMxPQAAAADcqOC/AAAAAHhp0D0AAAAAWyrfPwAAAACTMN29AAAAALsD/T8AAAAAD1sOuwAAAAAgdfe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHwhXL/0dzaMAWyUTegDjAF0lEdArvcRrvb48HV9lChoBkdAcnaWWyC4BmgHTegDaAhHQK74Mbb1yvN1fZQoaAZHQIu9WxfOUt9oB03oA2gIR0Cu+Q4k3S8bdX2UKGgGR0CJI1DZUT+OaAdN6ANoCEdArwPtrTH80nV9lChoBkdAfjmyt3fQ8mgHTegDaAhHQK8GiQ9RrJt1fZQoaAZHQIEekiOearpoB03oA2gIR0CvB08eCCjDdX2UKGgGR8BGatqQA+6iaAdLW2gIR0CvB6tkWhysdX2UKGgGR0CH8bRPXTVlaAdN6ANoCEdArwfcSIxgzHV9lChoBkdAZW+CFsYVI2gHS+hoCEdArwq6yrxRVXV9lChoBkdAggZ5WzWwvGgHTegDaAhHQK8QbBBzFMt1fZQoaAZHQIwplAkcCHRoB03oA2gIR0CvFDHs1KoRdX2UKGgGR0CM4M3AEdNnaAdN6ANoCEdArxS2LaVUuXV9lChoBkdAYc5SKFZgX2gHS7doCEdArxd5bnoxH3V9lChoBkdAktYPZ/Tb4GgHTegDaAhHQK8ZQmE4//x1fZQoaAZHQJDfSU2UB4loB03oA2gIR0CvIFi2tuDSdX2UKGgGR0CCvkJ9AooeaAdN6ANoCEdAryQnZ/Tb4HV9lChoBkdAkOCYaDPGAGgHTegDaAhHQK8mB10T1011fZQoaAZHQHUq+1ndwehoB03oA2gIR0CvJzSq+8GtdX2UKGgGR0CI47vS+g14aAdN6ANoCEdAryysuL74z3V9lChoBkdAjiZhIFvAGmgHTegDaAhHQK8wNJLdvbZ1fZQoaAZHQJGGmvdM0xdoB03oA2gIR0CvMk992HLzdX2UKGgGR0CJX3ta6jFiaAdN6ANoCEdArzP5JAdGRXV9lChoBkdAkXjaqXF98mgHTegDaAhHQK88K2x6fJ51fZQoaAZHQIqsnC66J69oB03oA2gIR0CvP7iAc1fmdX2UKGgGR0CMbCsEJSiuaAdN6ANoCEdAr0F/PcBU73V9lChoBkdAjCbAYxcmjWgHTegDaAhHQK9CmVKwpvx1fZQoaAZHQJFn/52yLQ5oB03oA2gIR0CvSBrO7g89dX2UKGgGR0CFQyKXOW0JaAdN6ANoCEdAr0u0jopx3nV9lChoBkdAkUfxouf29WgHTegDaAhHQK9NgedTYNB1fZQoaAZHQIsI3kBCD29oB03oA2gIR0CvTp6sp5NXdX2UKGgGR0CUc3V+Zw4saAdN6ANoCEdAr1Yx8IAwPHV9lChoBkdAlO0S8nNPg2gHTegDaAhHQK9bVa3Zwn91fZQoaAZHQJNT2mBOHnFoB03oA2gIR0CvXTahQFcIdX2UKGgGR0CT/x9lEqlQaAdN6ANoCEdAr15cSuhbn3V9lChoBkdAk9V/0NBnjGgHTegDaAhHQK9j4JqqOtJ1fZQoaAZHQJNj7UutfXxoB03oA2gIR0CvZ4CsfaHsdX2UKGgGR0CL3ckO7QLNaAdN6ANoCEdAr2lbylN1yXV9lChoBkdAlMgH5aePJmgHTegDaAhHQK9qeYyfthN1fZQoaAZHQJTF9LCemN1oB03oA2gIR0CvcLVnEl3RdX2UKGgGR0CQivETQE6laAdN6ANoCEdAr3YdhgE2YXV9lChoBkdAlLsbKmsNlWgHTegDaAhHQK947PznRsx1fZQoaAZHQIsss0aZQYVoB03oA2gIR0Cveh0vXbuddX2UKGgGR0COBypXp4bCaAdN6ANoCEdAr3+veP7vX3V9lChoBkdAlOAU6PsAvWgHTegDaAhHQK+DRKfWcz91fZQoaAZHQJYqag7HQyBoB03oA2gIR0CvhRr8R+SbdX2UKGgGR0CW2cJ66asqaAdN6ANoCEdAr4Y2m1pj+nV9lChoBkdAmORWy5Zr6GgHTegDaAhHQK+Ls5bQkX11fZQoaAZHQJeoe3H7xd9oB03oA2gIR0CvkFTHbRF7dX2UKGgGR0CaSLwDeTFEaAdN6ANoCEdAr5MayB06o3V9lChoBkdAlz4kKVpsXWgHTegDaAhHQK+U1jI7vG91fZQoaAZHQJjD7oV2zOZoB03oA2gIR0Cvm3Qsf7rLdX2UKGgGR0CZ1vx5s0pFaAdN6ANoCEdAr58WcOLBK3V9lChoBkdAlZe7E9+w1WgHTegDaAhHQK+g74xk/bF1fZQoaAZHQJZqU8kleGBoB03oA2gIR0CvoiA+Y+jedX2UKGgGR0CZL2VTrE9/aAdN6ANoCEdAr6eo2Q4jr3V9lChoBkdAldAEhmoR7WgHTegDaAhHQK+rM4iHIp91fZQoaAZHQJKjam65Gz9oB03oA2gIR0CvracHv+fidX2UKGgGR0CU7W08vEjxaAdN6ANoCEdAr69Fy3kPtnV9lChoBkdAeYWMLF4s3GgHTYABaAhHQK+2YNc4YJp1fZQoaAZHQJaN/MzMzM1oB03oA2gIR0Cvt0XLNfPYdX2UKGgGR0CbdKkK/mDEaAdN6ANoCEdAr7rrONYKY3V9lChoBkdAlQkNTP0I1WgHTegDaAhHQK+81iDujRF1fZQoaAZHQJaqLC/GlyloB03oA2gIR0CvwulW4mTldX2UKGgGR0CVZNDgIhQnaAdN6ANoCEdAr8PInSfDk3V9lChoBkdAmExqhpQDWGgHTegDaAhHQK/HfjzZpSJ1fZQoaAZHQJZqSg6EJ0JoB03oA2gIR0CvyWje0ojOdX2UKGgGR0CWAj1J17pnaAdN6ANoCEdAr9Hf/vOQhnV9lChoBkdAlSkb9/BnBmgHTegDaAhHQK/TRgVGkN51fZQoaAZHQJQ8KLUCq6xoB03oA2gIR0Cv16zuOS4fdX2UKGgGR0CU+Y1uivgWaAdN6ANoCEdAr9mbf+CK8HV9lChoBkdAmxrJn13+uWgHTegDaAhHQK/fpo3aSLZ1fZQoaAZHQJUToTGo73hoB03oA2gIR0Cv4IegL7XQdX2UKGgGR0CXvvUXHim3aAdN6ANoCEdAr+Qavs7dSHV9lChoBkdAlxhDC+De02gHTegDaAhHQK/l54SpR411fZQoaAZHQJqeXuUliSdoB03oA2gIR0Cv7NWuX/o8dX2UKGgGR0CY2gHoX9BKaAdN6ANoCEdAr+4ZegL7XXV9lChoBkdAktecWCVbA2gHTegDaAhHQK/zlSDyvs91fZQoaAZHQJU74h6jWTZoB03oA2gIR0Cv9Vs4T9KmdX2UKGgGR0CWP0UutfXxaAdN6ANoCEdAr/sI2ETQFHV9lChoBkdAmRKyQDFId2gHTegDaAhHQK/710/4Zdh1fZQoaAZHQJNmXC9AX2xoB03oA2gIR0Cv/3PSc9W7dX2UKGgGR0CRuTnQID5kaAdN6ANoCEdAsACkJQcghnV9lChoBkdAlJ/ElE7W/mgHTegDaAhHQLADd4Nqgyx1fZQoaAZHQIQph79hqj9oB03oA2gIR0CwA+2St/4JdX2UKGgGR0CTONVG0/noaAdN6ANoCEdAsAaI8KXv6XV9lChoBkdAmipWRFI/aGgHTegDaAhHQLAH+BtDUmV1fZQoaAZHQJXS7buc+aBoB03oA2gIR0CwC1W7J4jbdX2UKGgGR0CU4+b3XZoPaAdN6ANoCEdAsAvBCOWBz3V9lChoBkdAlvY/kq+ajWgHTegDaAhHQLANjcbzbvh1fZQoaAZHQJoPLNPgvUVoB03oA2gIR0CwDnpMpPRBdX2UKGgGR0CYstvNeMQ3aAdN6ANoCEdAsBFP668QI3V9lChoBkdAkD7lct5D7mgHTegDaAhHQLARve5Fw1l1fZQoaAZHQJh91IsiB5JoB03oA2gIR0CwE6qA4GUwdX2UKGgGR0CZwI1WbPQfaAdN6ANoCEdAsBT/668QI3V9lChoBkdAcz43TNMXamgHTegDaAhHQLAZG6QeV9p1fZQoaAZHQJccUlKK509oB03oA2gIR0CwGYiLAHmjdX2UKGgGR0CXeuZkTYdyaAdN6ANoCEdAsBtNH7P6bnV9lChoBkdAlFX190A93mgHTegDaAhHQLAcOdFOO811fZQoaAZHQJWovOMVDa5oB03oA2gIR0CwHxKpo9LYdX2UKGgGR0CVZSR2r4nGaAdN6ANoCEdAsB+AnrpqynVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c96470db629060e4de88d589c0185f96a1dc9915eb90474e6b4cd4d308f30f18
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caf9ba1f8fd01745ac6a70c9a1c9554454c3335778427a92dd85424877b3585d
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bc54e9ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bc54e9f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bc54ec040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bc54ec0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f9bc54ec160>", "forward": "<function ActorCriticPolicy.forward at 0x7f9bc54ec1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9bc54ec280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bc54ec310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9bc54ec3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bc54ec430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bc54ec4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bc54ec550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9bc54eaa40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679551722489874639, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP5mBj8QadQ9GyoEPzEvnD9YyJY/jtidPsi4ND9CCa+/7soQP5W+2D42B1m/JBPJP9Y/Vz5NVMI/nwzSPj36jD4U3pQ/xpeEvq6SHz+/V469KlZAv5lXXj3Hiko/aZlZv7ihlL/HXrY+p/DAvx/hbD9rIAw9aCyNvgMN1z5jlYw+t+AbwGn7Fj/dyMO+QMtTv/TbR7/ZDLa9NohUP3WEG71G2WW+uI8IwHJVVD9WtYM9fs09v5TD078CpwA/6OJ+PodDP78mmxQ8L/NEv/Jn4Tvhdlw/x162PsvVKT/+VIq/e3ERv8Yd9D5e+AE/LGIFvTQ9FEDI5+6+IxHWPR3fVDwc/+8+R0SoPwaW8L13LUM/HtqfPx/vC0AAQgM/piyPP7fNlz+ACmpAoGQhP5RlFTxG4Ea9qQz3PxoiDz2hzDU+uKGUv8detj6n8MC/H+FsP9SecD/nsRq/a+N7PgmpnD6O3ks+coXQPrNmYT+K5Wy/JpU8P3/lRMDQUCM/K8sEwAzxOj8mLTK/4sVvvZm6PT99sp4/UoflvtUWIT+rYDc+Gk9rPm+YMMCt0LI/K+0tPrihlL/HXrY+p/DAvx/hbD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACIPL81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXuaDPAAAAACw1eO/AAAAAJhuzj0AAAAAPkvgPwAAAACL5vk9AAAAAPn76D8AAAAAkI4NPgAAAABRbPO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcl6MNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGwx7L0AAAAA9GL8vwAAAADFfPs8AAAAAHai+j8AAAAAfcSJvQAAAADtgvw/AAAAAKm2z70AAAAAT+X5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN5egzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALlnC9AAAAAMOh878AAAAAJhy5vAAAAAAxufA/AAAAAIzjED4AAAAA9PX1PwAAAAANzlY7AAAAABWq6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNKpK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEBMxPQAAAADcqOC/AAAAAHhp0D0AAAAAWyrfPwAAAACTMN29AAAAALsD/T8AAAAAD1sOuwAAAAAgdfe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHwhXL/0dzaMAWyUTegDjAF0lEdArvcRrvb48HV9lChoBkdAcnaWWyC4BmgHTegDaAhHQK74Mbb1yvN1fZQoaAZHQIu9WxfOUt9oB03oA2gIR0Cu+Q4k3S8bdX2UKGgGR0CJI1DZUT+OaAdN6ANoCEdArwPtrTH80nV9lChoBkdAfjmyt3fQ8mgHTegDaAhHQK8GiQ9RrJt1fZQoaAZHQIEekiOearpoB03oA2gIR0CvB08eCCjDdX2UKGgGR8BGatqQA+6iaAdLW2gIR0CvB6tkWhysdX2UKGgGR0CH8bRPXTVlaAdN6ANoCEdArwfcSIxgzHV9lChoBkdAZW+CFsYVI2gHS+hoCEdArwq6yrxRVXV9lChoBkdAggZ5WzWwvGgHTegDaAhHQK8QbBBzFMt1fZQoaAZHQIwplAkcCHRoB03oA2gIR0CvFDHs1KoRdX2UKGgGR0CM4M3AEdNnaAdN6ANoCEdArxS2LaVUuXV9lChoBkdAYc5SKFZgX2gHS7doCEdArxd5bnoxH3V9lChoBkdAktYPZ/Tb4GgHTegDaAhHQK8ZQmE4//x1fZQoaAZHQJDfSU2UB4loB03oA2gIR0CvIFi2tuDSdX2UKGgGR0CCvkJ9AooeaAdN6ANoCEdAryQnZ/Tb4HV9lChoBkdAkOCYaDPGAGgHTegDaAhHQK8mB10T1011fZQoaAZHQHUq+1ndwehoB03oA2gIR0CvJzSq+8GtdX2UKGgGR0CI47vS+g14aAdN6ANoCEdAryysuL74z3V9lChoBkdAjiZhIFvAGmgHTegDaAhHQK8wNJLdvbZ1fZQoaAZHQJGGmvdM0xdoB03oA2gIR0CvMk992HLzdX2UKGgGR0CJX3ta6jFiaAdN6ANoCEdArzP5JAdGRXV9lChoBkdAkXjaqXF98mgHTegDaAhHQK88K2x6fJ51fZQoaAZHQIqsnC66J69oB03oA2gIR0CvP7iAc1fmdX2UKGgGR0CMbCsEJSiuaAdN6ANoCEdAr0F/PcBU73V9lChoBkdAjCbAYxcmjWgHTegDaAhHQK9CmVKwpvx1fZQoaAZHQJFn/52yLQ5oB03oA2gIR0CvSBrO7g89dX2UKGgGR0CFQyKXOW0JaAdN6ANoCEdAr0u0jopx3nV9lChoBkdAkUfxouf29WgHTegDaAhHQK9NgedTYNB1fZQoaAZHQIsI3kBCD29oB03oA2gIR0CvTp6sp5NXdX2UKGgGR0CUc3V+Zw4saAdN6ANoCEdAr1Yx8IAwPHV9lChoBkdAlO0S8nNPg2gHTegDaAhHQK9bVa3Zwn91fZQoaAZHQJNT2mBOHnFoB03oA2gIR0CvXTahQFcIdX2UKGgGR0CT/x9lEqlQaAdN6ANoCEdAr15cSuhbn3V9lChoBkdAk9V/0NBnjGgHTegDaAhHQK9j4JqqOtJ1fZQoaAZHQJNj7UutfXxoB03oA2gIR0CvZ4CsfaHsdX2UKGgGR0CL3ckO7QLNaAdN6ANoCEdAr2lbylN1yXV9lChoBkdAlMgH5aePJmgHTegDaAhHQK9qeYyfthN1fZQoaAZHQJTF9LCemN1oB03oA2gIR0CvcLVnEl3RdX2UKGgGR0CQivETQE6laAdN6ANoCEdAr3YdhgE2YXV9lChoBkdAlLsbKmsNlWgHTegDaAhHQK947PznRsx1fZQoaAZHQIsss0aZQYVoB03oA2gIR0Cveh0vXbuddX2UKGgGR0COBypXp4bCaAdN6ANoCEdAr3+veP7vX3V9lChoBkdAlOAU6PsAvWgHTegDaAhHQK+DRKfWcz91fZQoaAZHQJYqag7HQyBoB03oA2gIR0CvhRr8R+SbdX2UKGgGR0CW2cJ66asqaAdN6ANoCEdAr4Y2m1pj+nV9lChoBkdAmORWy5Zr6GgHTegDaAhHQK+Ls5bQkX11fZQoaAZHQJeoe3H7xd9oB03oA2gIR0CvkFTHbRF7dX2UKGgGR0CaSLwDeTFEaAdN6ANoCEdAr5MayB06o3V9lChoBkdAlz4kKVpsXWgHTegDaAhHQK+U1jI7vG91fZQoaAZHQJjD7oV2zOZoB03oA2gIR0Cvm3Qsf7rLdX2UKGgGR0CZ1vx5s0pFaAdN6ANoCEdAr58WcOLBK3V9lChoBkdAlZe7E9+w1WgHTegDaAhHQK+g74xk/bF1fZQoaAZHQJZqU8kleGBoB03oA2gIR0CvoiA+Y+jedX2UKGgGR0CZL2VTrE9/aAdN6ANoCEdAr6eo2Q4jr3V9lChoBkdAldAEhmoR7WgHTegDaAhHQK+rM4iHIp91fZQoaAZHQJKjam65Gz9oB03oA2gIR0CvracHv+fidX2UKGgGR0CU7W08vEjxaAdN6ANoCEdAr69Fy3kPtnV9lChoBkdAeYWMLF4s3GgHTYABaAhHQK+2YNc4YJp1fZQoaAZHQJaN/MzMzM1oB03oA2gIR0Cvt0XLNfPYdX2UKGgGR0CbdKkK/mDEaAdN6ANoCEdAr7rrONYKY3V9lChoBkdAlQkNTP0I1WgHTegDaAhHQK+81iDujRF1fZQoaAZHQJaqLC/GlyloB03oA2gIR0CvwulW4mTldX2UKGgGR0CVZNDgIhQnaAdN6ANoCEdAr8PInSfDk3V9lChoBkdAmExqhpQDWGgHTegDaAhHQK/HfjzZpSJ1fZQoaAZHQJZqSg6EJ0JoB03oA2gIR0CvyWje0ojOdX2UKGgGR0CWAj1J17pnaAdN6ANoCEdAr9Hf/vOQhnV9lChoBkdAlSkb9/BnBmgHTegDaAhHQK/TRgVGkN51fZQoaAZHQJQ8KLUCq6xoB03oA2gIR0Cv16zuOS4fdX2UKGgGR0CU+Y1uivgWaAdN6ANoCEdAr9mbf+CK8HV9lChoBkdAmxrJn13+uWgHTegDaAhHQK/fpo3aSLZ1fZQoaAZHQJUToTGo73hoB03oA2gIR0Cv4IegL7XQdX2UKGgGR0CXvvUXHim3aAdN6ANoCEdAr+Qavs7dSHV9lChoBkdAlxhDC+De02gHTegDaAhHQK/l54SpR411fZQoaAZHQJqeXuUliSdoB03oA2gIR0Cv7NWuX/o8dX2UKGgGR0CY2gHoX9BKaAdN6ANoCEdAr+4ZegL7XXV9lChoBkdAktecWCVbA2gHTegDaAhHQK/zlSDyvs91fZQoaAZHQJU74h6jWTZoB03oA2gIR0Cv9Vs4T9KmdX2UKGgGR0CWP0UutfXxaAdN6ANoCEdAr/sI2ETQFHV9lChoBkdAmRKyQDFId2gHTegDaAhHQK/710/4Zdh1fZQoaAZHQJNmXC9AX2xoB03oA2gIR0Cv/3PSc9W7dX2UKGgGR0CRuTnQID5kaAdN6ANoCEdAsACkJQcghnV9lChoBkdAlJ/ElE7W/mgHTegDaAhHQLADd4Nqgyx1fZQoaAZHQIQph79hqj9oB03oA2gIR0CwA+2St/4JdX2UKGgGR0CTONVG0/noaAdN6ANoCEdAsAaI8KXv6XV9lChoBkdAmipWRFI/aGgHTegDaAhHQLAH+BtDUmV1fZQoaAZHQJXS7buc+aBoB03oA2gIR0CwC1W7J4jbdX2UKGgGR0CU4+b3XZoPaAdN6ANoCEdAsAvBCOWBz3V9lChoBkdAlvY/kq+ajWgHTegDaAhHQLANjcbzbvh1fZQoaAZHQJoPLNPgvUVoB03oA2gIR0CwDnpMpPRBdX2UKGgGR0CYstvNeMQ3aAdN6ANoCEdAsBFP668QI3V9lChoBkdAkD7lct5D7mgHTegDaAhHQLARve5Fw1l1fZQoaAZHQJh91IsiB5JoB03oA2gIR0CwE6qA4GUwdX2UKGgGR0CZwI1WbPQfaAdN6ANoCEdAsBT/668QI3V9lChoBkdAcz43TNMXamgHTegDaAhHQLAZG6QeV9p1fZQoaAZHQJccUlKK509oB03oA2gIR0CwGYiLAHmjdX2UKGgGR0CXeuZkTYdyaAdN6ANoCEdAsBtNH7P6bnV9lChoBkdAlFX190A93mgHTegDaAhHQLAcOdFOO811fZQoaAZHQJWovOMVDa5oB03oA2gIR0CwHxKpo9LYdX2UKGgGR0CVZSR2r4nGaAdN6ANoCEdAsB+AnrpqynVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:740363e8d021a5d7db8f12173cebb5c11dd5ad62bfda171a7c81c50c378d7d66
|
3 |
+
size 1150239
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1495.898562303395, "std_reward": 315.4757978950735, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T07:09:10.804193"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcefeda975e0d6564a0bb01872062b928a8cf4af5095068be8b92c6867a2679f
|
3 |
+
size 2136
|