File size: 27,486 Bytes
5124462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoModelForTokenClassification\n",
"from transformers import AutoTokenizer\n",
"\n",
"from datasets import load_dataset\n",
"from pprint import pprint\n",
"from collections import Counter\n",
"import random\n",
"import evaluate\n",
"import numpy as np\n",
"\n",
"import os\n",
"from huggingface_hub import login\n",
"from transformers import TrainingArguments, Trainer\n",
"from transformers import DataCollatorForTokenClassification"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Define the checkpoint and get access to the huggingface token for uploading the model to huggingface hub\n",
"checkpoint = \"bert-base-cased\"\n",
"os.environ[\"HF_TOKEN\"] = open(\n",
" \"/home/hf/hf-course/chapter7/hf-token.txt\", \"r\").readlines()[0]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['text', 'entities', 'entities-suggestion', 'entities-suggestion-metadata', 'external_id', 'metadata'],\n",
" num_rows: 8528\n",
" })\n",
" validation: Dataset({\n",
" features: ['text', 'entities', 'entities-suggestion', 'entities-suggestion-metadata', 'external_id', 'metadata'],\n",
" num_rows: 8528\n",
" })\n",
"})"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load the dataset\n",
"dataset = load_dataset(\"louisguitton/dev-ner-ontonotes\")\n",
"dataset"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'entities': [],\n",
" 'entities-suggestion': {'end': [30],\n",
" 'label': ['PERSON'],\n",
" 'score': [1.0],\n",
" 'start': [23],\n",
" 'text': ['Camilla']},\n",
" 'entities-suggestion-metadata': {'agent': 'gold_labels',\n",
" 'score': None,\n",
" 'type': None},\n",
" 'external_id': None,\n",
" 'metadata': '{}',\n",
" 'text': 'The horse is basically Camilla /.'}\n"
]
}
],
"source": [
"# Have a look at one sample example in the dataset\n",
"pprint(dataset[\"train\"].shuffle().take(1)[0])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['O', 'B-CARDINAL', 'I-CARDINAL', 'B-DATE', 'I-DATE', 'B-EVENT', 'I-EVENT', 'B-FAC', 'I-FAC', 'B-GPE', 'I-GPE', 'B-LANGUAGE', 'I-LANGUAGE', 'B-LAW', 'I-LAW', 'B-LOC', 'I-LOC', 'B-MONEY', 'I-MONEY', 'B-NORP', 'I-NORP', 'B-ORDINAL', 'I-ORDINAL', 'B-ORG', 'I-ORG', 'B-PERCENT', 'I-PERCENT', 'B-PERSON', 'I-PERSON', 'B-PRODUCT', 'I-PRODUCT', 'B-QUANTITY', 'I-QUANTITY', 'B-TIME', 'I-TIME', 'B-WORK_OF_ART', 'I-WORK_OF_ART']\n",
"Counter({'GPE': 2268, 'PERSON': 2020, 'ORG': 1740, 'DATE': 1507, 'CARDINAL': 938, 'NORP': 847, 'MONEY': 274, 'ORDINAL': 232, 'TIME': 214, 'LOC': 204, 'PERCENT': 177, 'EVENT': 143, 'WORK_OF_ART': 142, 'FAC': 115, 'QUANTITY': 100, 'PRODUCT': 72, 'LAW': 40, 'LANGUAGE': 33})\n"
]
}
],
"source": [
"# Have a look at the distribution of all the labels\n",
"entity_types = []\n",
"\n",
"for element in dataset[\"train\"]:\n",
" entity_types.extend(element[\"entities-suggestion\"][\"label\"])\n",
"\n",
"entities = sorted(set(entity_types))\n",
"final_entities = [\"O\"]\n",
"for entity in entities:\n",
" final_entities.extend([f\"B-{entity}\", f\"I-{entity}\"])\n",
"print(final_entities)\n",
"print(Counter(entity_types))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Create a couple of dictionaries to map all the entities to integer ids and vice versa\n",
"id2label = {i: label for i, label in enumerate(final_entities)}\n",
"label2id = {v: k for k, v in id2label.items()}"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/huggingface/lib/python3.10/site-packages/huggingface_hub/file_download.py:1150: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
" warnings.warn(\n"
]
}
],
"source": [
"# Create the tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"BertTokenizerFast(name_or_path='bert-base-cased', vocab_size=28996, model_max_length=512, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'})\n"
]
}
],
"source": [
"# Have a look at the tokenizer\n",
"pprint(tokenizer)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Tokenize one sample and check what all is returned\n",
"output = tokenizer(dataset[\"train\"][0][\"text\"], return_offsets_mapping=True)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'offset_mapping'])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output.keys()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'start': [2, 40, 53, 108, 122],\n",
" 'end': [9, 45, 56, 113, 137],\n",
" 'label': ['NORP', 'CARDINAL', 'CARDINAL', 'PRODUCT', 'LOC'],\n",
" 'text': ['Russian', 'three', '118', 'Kursk', 'the Barents Sea'],\n",
" 'score': [1.0, 1.0, 1.0, 1.0, 1.0]}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Have a look at the entities\n",
"dataset[\"train\"][\"entities-suggestion\"][0]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"def in_span(source_start, source_end, target_start, target_end):\n",
" \"\"\"\n",
" Function to check if the target span is contained within the source span\n",
" \"\"\"\n",
" if (target_start >= source_start) and (target_end <= source_end):\n",
" return True\n",
" return False\n",
"\n",
"\n",
"def tokenize_and_create_labels(example):\n",
" \"\"\"\n",
" Function to tokenize the example and subsequently create labels. The labels provided will not be aligned with the tokens (after wordpiece tokenization); hence this step.\n",
" \"\"\"\n",
" outputs = tokenizer(\n",
" example[\"text\"], truncation=True, return_offsets_mapping=True)\n",
"\n",
" output_labels = []\n",
" n_samples = len(example[\"text\"])\n",
"\n",
" # Do for all the samples in the batch\n",
" for i in range(n_samples):\n",
" # Do not take the first and last offsets as they belong to a special token (CLS and SEP respectively)\n",
" offsets = outputs[\"offset_mapping\"][i][1:-1]\n",
" num_tokens = len(offsets)\n",
"\n",
" # Entity spans\n",
" entity_starts = example[\"entities-suggestion\"][i][\"start\"]\n",
" entity_ends = example[\"entities-suggestion\"][i][\"end\"]\n",
"\n",
" # Labels and their number\n",
" text_labels = example[\"entities-suggestion\"][i][\"label\"]\n",
" num_entities = len(text_labels)\n",
"\n",
" labels = []\n",
"\n",
" entities = example[\"entities-suggestion\"][i]\n",
"\n",
" # If there are no spans, it will all be a list of Os\n",
" if len(entities[\"start\"]) == 0:\n",
" labels = [label2id[\"O\"] for _ in range(num_tokens)]\n",
" # Otherwise check span by span\n",
" else:\n",
" idx = 0\n",
" source_start, source_end = entity_starts[idx], entity_ends[idx]\n",
" previous_label = \"O\"\n",
"\n",
" for loop_idx, (start, end) in enumerate(offsets):\n",
" # By default, the token is an O token\n",
" lab = \"O\"\n",
"\n",
" # While you have not exceeded the number of identities provided\n",
" if idx < num_entities:\n",
" # While you have not stepped ahead of the next identity span\n",
" if start > source_end:\n",
" # If you have reached the end of the identities annotated, simply fill in the remainder of the tokens as O\n",
" if idx == num_entities - 1:\n",
" lab = \"O\"\n",
" remainder = [\n",
" label2id[\"O\"] for _ in range(num_tokens - loop_idx)\n",
" ]\n",
" labels.extend(remainder)\n",
" break\n",
" else:\n",
" idx += 1\n",
"\n",
" # If the idx is refreshed, then consider new span\n",
" source_start, source_end = entity_starts[idx], entity_ends[idx]\n",
"\n",
" # Check if current token is within the source span\n",
" if in_span(source_start, source_end, start, end):\n",
" # Check if the previous label was an O, if so then this one would begin with a B- else an I-\n",
" lab = \"B-\" if previous_label == \"O\" else \"I-\"\n",
" lab = lab + text_labels[idx]\n",
" else:\n",
" lab = \"O\"\n",
"\n",
" labels.append(label2id[lab])\n",
" previous_label = lab\n",
" # The first and last tokens are reserved for special words [CLS] and [SEP], hence modify their indices accordingly\n",
" output_labels.append([-100] + labels + [-100])\n",
" outputs[\"labels\"] = output_labels\n",
"\n",
" return outputs"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"tokenized_dataset = dataset.map(tokenize_and_create_labels, batched=True,\n",
" remove_columns=dataset[\"train\"].column_names)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "14b7a117c7c4418aa3d0d08eb7563add",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map: 0%| | 0/5 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Create a sample of 5 items for the sake of visualization\n",
"samples = dataset[\"train\"].shuffle(seed=43).take(5).map(\n",
" tokenize_and_create_labels, batched=True)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[CLS] An easy but rare maneuver with extraordinary consequences / . [SEP] \n",
"SPECIAL O O O O O O O O O O SPECIAL \n",
"Number of tokens: 12, Number of Labels: 12\n",
"Entities Annotated: {'start': [], 'end': [], 'label': [], 'text': [], 'score': []}\n"
]
}
],
"source": [
"# Visualize a few samples from the dataset randomly\n",
"idx = random.randint(0, len(samples))\n",
"\n",
"ip_tokens = [tokenizer.decode([x]) for x in samples[idx][\"input_ids\"]]\n",
"labels = samples[idx][\"labels\"]\n",
"\n",
"token_op, lbl_op = \"\", \"\"\n",
"for token, lbl in zip(ip_tokens, labels):\n",
" lbl = id2label.get(lbl, \"SPECIAL\")\n",
" l = max(len(token), len(lbl)) + 2\n",
" token_op += f\"{token:<{l}}\"\n",
" lbl_op += f\"{lbl:<{l}}\"\n",
"\n",
"print(token_op)\n",
"print(lbl_op)\n",
"print(f\"Number of tokens: {len(ip_tokens)}, Number of Labels: {len(labels)}\")\n",
"print(\"Entities Annotated: \", samples[idx][\"entities-suggestion\"])"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# We need to remove the offset mappings as it would not be possible to colalte data without dropping this column\n",
"tokenized_dataset = tokenized_dataset.remove_columns(\n",
" column_names=[\"offset_mapping\"])"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
]
},
{
"data": {
"text/plain": [
"tensor([[-100, 0, 19, 0, 0, 0, 0, 0, 0, 1, 0, 0,\n",
" 1, 0, 0, 0, 0, 0, 0, 0, 0, 29, 30, 0,\n",
" 0, 15, 16, 16, 16, 0, -100],\n",
" [-100, 0, 0, 0, 0, 0, 0, 0, 19, 0, 19, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, -100, -100, -100, -100, -100]])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a data collator to apply padding as and when necessary and have a look at the working of the same\n",
"data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)\n",
"batch = data_collator([tokenized_dataset[\"train\"][i] for i in range(2)])\n",
"batch[\"labels\"]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"metric = evaluate.load(\"seqeval\")\n",
"\n",
"def compute_metrics(eval_preds):\n",
" logits, labels = eval_preds\n",
"\n",
" # Get the most probable token prediction\n",
" predictions = np.argmax(logits, axis=-1)\n",
"\n",
" # Remove ignored index (special tokens) and convert to labels\n",
" true_labels, true_predictions = [], []\n",
" for prediction, label in zip(predictions, labels):\n",
" current_prediction, current_label = [], []\n",
" for p, l in zip(prediction, label):\n",
" if l != -100:\n",
" current_label.append(id2label[l])\n",
" current_prediction.append(id2label[p])\n",
" true_labels.append(current_label)\n",
" true_predictions.append(current_prediction)\n",
"\n",
" # Compute the metrics using above predictions and labels\n",
" all_metrics = metric.compute(\n",
" predictions=true_predictions, references=true_labels)\n",
"\n",
" # Return the overall metrics and not individual level metrics\n",
" return {\n",
" \"precision\": all_metrics[\"overall_precision\"],\n",
" \"recall\": all_metrics[\"overall_recall\"],\n",
" \"f1\": all_metrics[\"overall_f1\"],\n",
" \"accuracy\": all_metrics[\"overall_accuracy\"],\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at bert-base-cased were not used when initializing BertForTokenClassification: ['cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias']\n",
"- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForTokenClassification were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"# Create a model for token classification on top of pretrained BERT model\n",
"model = AutoModelForTokenClassification.from_pretrained(\n",
" checkpoint,\n",
" id2label=id2label,\n",
" label2id=label2id\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Linear(in_features=768, out_features=37, bias=True)"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check the classifier architecture\n",
"model.classifier"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(37, 37, 37)"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Have a look at the number of labels, the number of ids created for those labels and the number of activations in the final layer of the model\n",
"model.config.num_labels, len(label2id), len(id2label)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
"Token is valid (permission: write).\n",
"Your token has been saved to /home/.cache/huggingface/token\n",
"Login successful\n"
]
}
],
"source": [
"# Login to huggingface for uploading the generated model\n",
"login(token=os.environ.get(\"HF_TOKEN\"))"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"args = TrainingArguments(\n",
" \"dev-ner-ontonote-bert-finetuned\",\n",
" evaluation_strategy=\"epoch\",\n",
" save_strategy=\"epoch\",\n",
" learning_rate=2e-5,\n",
" num_train_epochs=5,\n",
" weight_decay=0.01,\n",
" push_to_hub=True,\n",
" per_device_train_batch_size=32,\n",
" per_device_eval_batch_size=32\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['input_ids', 'token_type_ids', 'attention_mask', 'labels'],\n",
" num_rows: 8528\n",
" })\n",
" validation: Dataset({\n",
" features: ['input_ids', 'token_type_ids', 'attention_mask', 'labels'],\n",
" num_rows: 8528\n",
" })\n",
"})"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenized_dataset"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/huggingface/lib/python3.10/site-packages/huggingface_hub/utils/_deprecation.py:131: FutureWarning: 'Repository' (from 'huggingface_hub.repository') is deprecated and will be removed from version '1.0'. Please prefer the http-based alternatives instead. Given its large adoption in legacy code, the complete removal is only planned on next major release.\n",
"For more details, please read https://huggingface.co/docs/huggingface_hub/concepts/git_vs_http.\n",
" warnings.warn(warning_message, FutureWarning)\n",
"/home/hf/hf-course/chapter7/dev-ner-ontonote-bert-finetuned is already a clone of https://huggingface.co/ElisonSherton/dev-ner-ontonote-bert-finetuned. Make sure you pull the latest changes with `repo.git_pull()`.\n",
"/home/huggingface/lib/python3.10/site-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='1335' max='1335' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [1335/1335 09:17, Epoch 5/5]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Epoch</th>\n",
" <th>Training Loss</th>\n",
" <th>Validation Loss</th>\n",
" <th>Precision</th>\n",
" <th>Recall</th>\n",
" <th>F1</th>\n",
" <th>Accuracy</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>1</td>\n",
" <td>No log</td>\n",
" <td>0.111329</td>\n",
" <td>0.757552</td>\n",
" <td>0.797257</td>\n",
" <td>0.776898</td>\n",
" <td>0.968852</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2</td>\n",
" <td>0.281100</td>\n",
" <td>0.055888</td>\n",
" <td>0.873178</td>\n",
" <td>0.908711</td>\n",
" <td>0.890590</td>\n",
" <td>0.984724</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3</td>\n",
" <td>0.281100</td>\n",
" <td>0.035979</td>\n",
" <td>0.914701</td>\n",
" <td>0.947770</td>\n",
" <td>0.930942</td>\n",
" <td>0.990416</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4</td>\n",
" <td>0.063000</td>\n",
" <td>0.027458</td>\n",
" <td>0.933327</td>\n",
" <td>0.960033</td>\n",
" <td>0.946492</td>\n",
" <td>0.992793</td>\n",
" </tr>\n",
" <tr>\n",
" <td>5</td>\n",
" <td>0.063000</td>\n",
" <td>0.024083</td>\n",
" <td>0.940449</td>\n",
" <td>0.966845</td>\n",
" <td>0.953464</td>\n",
" <td>0.993742</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/huggingface/lib/python3.10/site-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n",
"/home/huggingface/lib/python3.10/site-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
" _warn_prf(average, modifier, msg_start, len(result))\n"
]
},
{
"data": {
"text/plain": [
"TrainOutput(global_step=1335, training_loss=0.1388676861252231, metrics={'train_runtime': 562.8544, 'train_samples_per_second': 75.757, 'train_steps_per_second': 2.372, 'total_flos': 1425922860395136.0, 'train_loss': 0.1388676861252231, 'epoch': 5.0})"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trainer = Trainer(\n",
" model=model,\n",
" args=args,\n",
" data_collator=data_collator,\n",
" train_dataset=tokenized_dataset[\"train\"],\n",
" eval_dataset=tokenized_dataset[\"validation\"],\n",
" compute_metrics=compute_metrics,\n",
" tokenizer=tokenizer\n",
")\n",
"\n",
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"To https://huggingface.co/ElisonSherton/dev-ner-ontonote-bert-finetuned\n",
" 41c8386..27067f9 main -> main\n",
"\n"
]
}
],
"source": [
"trainer.push_to_hub(\n",
" commit_message=\"🤗 Training of first BERT based NER task completed!!\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|