Ellbendls commited on
Commit
94c776e
·
verified ·
1 Parent(s): be33166

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -165
README.md CHANGED
@@ -1,199 +1,90 @@
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
61
 
62
- [More Information Needed]
 
 
63
 
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
+ Here’s a polished version of the `README.md` tailored for your fine-tuned model:
2
+
3
+ ---
4
+
5
+ ```markdown
6
  ---
7
  library_name: transformers
8
+ license: mit
9
+ datasets:
10
+ - gretelai/synthetic_text_to_sql
11
+ base_model:
12
+ - Qwen/Qwen2.5-3B-Instruct
13
+ pipeline_tag: text-generation
14
  ---
15
 
16
+ # Fine-Tuned LLM for Text-to-SQL Conversion
 
 
17
 
18
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) designed to convert natural language queries into SQL statements. It was trained on the `gretelai/synthetic_text_to_sql` dataset and can provide both SQL queries and table schema context when needed.
19
 
20
+ ---
21
 
22
  ## Model Details
23
 
24
  ### Model Description
25
 
26
+ This model has been fine-tuned to help users generate SQL queries based on natural language prompts. In scenarios where table schema context is missing, the model is trained to generate schema definitions along with the SQL query, making it a robust solution for various Text-to-SQL tasks.
27
 
28
+ - **Base Model:** [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)
29
+ - **Dataset:** [Gretel AI Synthetic Text-to-SQL Dataset](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql)
30
+ - **Language:** English
31
+ - **License:** MIT
32
 
33
+ ### Key Features
 
 
 
 
 
 
34
 
35
+ 1. **Text-to-SQL Conversion:** Converts natural language queries into accurate SQL statements.
36
+ 2. **Schema Generation:** Generates table schema context when none is provided.
37
+ 3. **Optimized for Analytics and Reporting:** Handles SQL queries with aggregation, grouping, and filtering.
38
 
39
+ ---
 
 
 
 
 
 
40
 
41
+ ## Usage
42
 
43
  ### Direct Use
44
 
45
+ To use the model for text-to-SQL conversion, you can load it using the `transformers` library as shown below:
 
 
 
 
46
 
47
+ ```python
48
+ from transformers import AutoTokenizer, AutoModelForCausalLM
49
 
50
+ tokenizer = AutoTokenizer.from_pretrained("your-model-id")
51
+ model = AutoModelForCausalLM.from_pretrained("your-model-id")
52
 
53
+ # Input prompt
54
+ query = "What is the total number of hospital beds in each state?"
55
 
56
+ # Tokenize input and generate output
57
+ inputs = tokenizer(query, return_tensors="pt")
58
+ outputs = model.generate(**inputs, max_length=512)
59
 
60
+ # Decode and print
61
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
62
+ ```
63
 
64
+ ### Example Output
65
+ Input:
66
+ `What is the total number of hospital beds in each state?`
67
 
68
+ Output:
69
+ ```sql
70
+ Context:
71
+ CREATE TABLE Beds (State VARCHAR(50), Beds INT);
72
+ INSERT INTO Beds (State, Beds) VALUES ('California', 100000), ('Texas', 85000), ('New York', 70000);
73
 
74
+ SQL Query:
75
+ SELECT State, SUM(Beds) FROM Beds GROUP BY State;
76
+ ```
77
 
78
+ ---
 
 
 
 
 
 
 
 
 
 
79
 
80
  ## Training Details
81
 
82
+ ### Dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ The model was fine-tuned on the `gretelai/synthetic_text_to_sql` dataset, which includes diverse natural language queries mapped to SQL queries, with optional schema contexts.
85
 
86
+ ## Limitations
87
 
88
+ 1. **Complex Queries:** May struggle with highly nested or advanced SQL tasks.
89
+ 2. **Non-English Prompts:** Optimized for English only.
90
+ 3. **Context Dependence:** May generate incorrect schemas without explicit instructions.