Ellbendls commited on
Commit
8462de1
·
1 Parent(s): f05d17b

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -24.17 +/- 12.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e030e79c89ff53866c12037fa9ba49eb45de91590e8c575aeebf75ed955ece05
3
+ size 108159
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3a3a273c70>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f3a3a267e80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1688786782229220810,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0E+4PmQD77umiQ8/0E+4PmQD77umiQ8/0E+4PmQD77umiQ8/0E+4PmQD77umiQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMQKKv/tqgzyMu7W/u1mAP+i+p79/M2m/qSanPvNfDr+rbqc/JH0DPjH0sT/Kx20/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQT7g+ZAPvu6aJDz+2+EM8GIDYOTimHjzQT7g+ZAPvu6aJDz+2+EM8GIDYOTimHjzQT7g+ZAPvu6aJDz+2+EM8GIDYOTimHjzQT7g+ZAPvu6aJDz+2+EM8GIDYOTimHjyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.35998392 -0.00729411 0.5606941 ]\n [ 0.35998392 -0.00729411 0.5606941 ]\n [ 0.35998392 -0.00729411 0.5606941 ]\n [ 0.35998392 -0.00729411 0.5606941 ]]",
38
+ "desired_goal": "[[-1.0781919 0.01604222 -1.419786 ]\n [ 1.0027384 -1.3105135 -0.910942 ]\n [ 0.32646683 -0.55615157 1.3080648 ]\n [ 0.12840706 1.3902646 0.9288298 ]]",
39
+ "observation": "[[ 3.5998392e-01 -7.2941054e-03 5.6069410e-01 1.1961153e-02\n 4.1294168e-04 9.6831843e-03]\n [ 3.5998392e-01 -7.2941054e-03 5.6069410e-01 1.1961153e-02\n 4.1294168e-04 9.6831843e-03]\n [ 3.5998392e-01 -7.2941054e-03 5.6069410e-01 1.1961153e-02\n 4.1294168e-04 9.6831843e-03]\n [ 3.5998392e-01 -7.2941054e-03 5.6069410e-01 1.1961153e-02\n 4.1294168e-04 9.6831843e-03]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdmwEPhglmb0xr28+r5sNPpXkCT5iElg+KHEZPUw2VzwS2/o8qJ/cPa4tAr4U6F0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.12932 -0.07477778 0.23406674]\n [ 0.1382892 0.13466103 0.21100762]\n [ 0.03746143 0.0131355 0.03062204]\n [ 0.1077264 -0.12712738 0.21670562]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8IY0KnCWM8CUhpRSlIwBbJRLMowBdJRHQKXcNc0tRN11fZQoaAZoCWgPQwjNAu0OKW49wJSGlFKUaBVLMmgWR0Cl2+TXBguzdX2UKGgGaAloD0MIMzLIXYThMMCUhpRSlGgVSzJoFkdApduTa4+bE3V9lChoBmgJaA9DCBYVcTrJQjbAlIaUUpRoFUsyaBZHQKXbRKXfIjp1fZQoaAZoCWgPQwg7VFOSdYhMwJSGlFKUaBVLMmgWR0Cl3StVaOghdX2UKGgGaAloD0MIPPiJA+gDN8CUhpRSlGgVSzJoFkdApdzaXfIjnnV9lChoBmgJaA9DCDoIOlrVOjbAlIaUUpRoFUsyaBZHQKXciHrQgLZ1fZQoaAZoCWgPQwgvih74GAg8wJSGlFKUaBVLMmgWR0Cl3DlUIcBEdX2UKGgGaAloD0MIbR/ylqtxRsCUhpRSlGgVSzJoFkdApd42W4Vh1HV9lChoBmgJaA9DCOGX+nlTCSfAlIaUUpRoFUsyaBZHQKXd5fQa73B1fZQoaAZoCWgPQwgllL4Qcg4dwJSGlFKUaBVLMmgWR0Cl3ZQw0wajdX2UKGgGaAloD0MIgVoMHqaZRsCUhpRSlGgVSzJoFkdApd1E/QjUu3V9lChoBmgJaA9DCNEi2/l+hkfAlIaUUpRoFUsyaBZHQKXfQ3Ov+wV1fZQoaAZoCWgPQwiFB82ue3MuwJSGlFKUaBVLMmgWR0Cl3vMBQvYfdX2UKGgGaAloD0MIwvf+Bu0hS8CUhpRSlGgVSzJoFkdApd6hHoX9BXV9lChoBmgJaA9DCIlhhzHp5zTAlIaUUpRoFUsyaBZHQKXeUee4Cp51fZQoaAZoCWgPQwgYJH1aRYcwwJSGlFKUaBVLMmgWR0Cl4HbNB4UvdX2UKGgGaAloD0MImdcRh2w4L8CUhpRSlGgVSzJoFkdApeAmcUdq+XV9lChoBmgJaA9DCE563/jaCzDAlIaUUpRoFUsyaBZHQKXf1UPxx1h1fZQoaAZoCWgPQwgabVUS2dcqwJSGlFKUaBVLMmgWR0Cl34dU83dcdX2UKGgGaAloD0MI9tN/1vxIScCUhpRSlGgVSzJoFkdApeGf6KtPpXV9lChoBmgJaA9DCOdSXFX29SzAlIaUUpRoFUsyaBZHQKXhTvhqCYl1fZQoaAZoCWgPQwjuQ95y9XMvwJSGlFKUaBVLMmgWR0Cl4P2iL2pRdX2UKGgGaAloD0MIGO3xQjosKMCUhpRSlGgVSzJoFkdApeCucBltj3V9lChoBmgJaA9DCI+Oq5FdCS7AlIaUUpRoFUsyaBZHQKXisg8r7O51fZQoaAZoCWgPQwgibk4lAywwwJSGlFKUaBVLMmgWR0Cl4mK0UoKEdX2UKGgGaAloD0MItMh2vp9aKcCUhpRSlGgVSzJoFkdApeIRlxwQ2HV9lChoBmgJaA9DCNANTdnpxy3AlIaUUpRoFUsyaBZHQKXhwzFdcB51fZQoaAZoCWgPQwh9IHnnUKJIwJSGlFKUaBVLMmgWR0Cl48cPWhAXdX2UKGgGaAloD0MIU5J1OLqSMsCUhpRSlGgVSzJoFkdApeN2oBJZn3V9lChoBmgJaA9DCFt6NNWTsTDAlIaUUpRoFUsyaBZHQKXjJMuez2R1fZQoaAZoCWgPQwjr5AzFHfcjwJSGlFKUaBVLMmgWR0Cl4tWUjcEedX2UKGgGaAloD0MIZTiez4B2R8CUhpRSlGgVSzJoFkdApeTZ4QjD9HV9lChoBmgJaA9DCHCUvDrH8CbAlIaUUpRoFUsyaBZHQKXkiPIXCTF1fZQoaAZoCWgPQwicU8kAUMU2wJSGlFKUaBVLMmgWR0Cl5DeI2wV1dX2UKGgGaAloD0MIW0I+6NmsFMCUhpRSlGgVSzJoFkdApePoVCXyAnV9lChoBmgJaA9DCESJljyeDifAlIaUUpRoFUsyaBZHQKXl/fUnXup1fZQoaAZoCWgPQwh73SIw1i83wJSGlFKUaBVLMmgWR0Cl5a1zIV/MdX2UKGgGaAloD0MIPNujN9zzNsCUhpRSlGgVSzJoFkdApeVcDfWMCXV9lChoBmgJaA9DCBoVONkGPifAlIaUUpRoFUsyaBZHQKXlDPYWcjJ1fZQoaAZoCWgPQwh6yJQPQfNIwJSGlFKUaBVLMmgWR0Cl5v8g6ltTdX2UKGgGaAloD0MIjrETXoJPM8CUhpRSlGgVSzJoFkdApeauqWC2+nV9lChoBmgJaA9DCNR9AFKb2CDAlIaUUpRoFUsyaBZHQKXmXMr3Cbd1fZQoaAZoCWgPQwhFSrN5HDZKwJSGlFKUaBVLMmgWR0Cl5g2Xb/OudX2UKGgGaAloD0MINiOD3EXiR8CUhpRSlGgVSzJoFkdApei3ZTQ3P3V9lChoBmgJaA9DCOF6FK5Hj0LAlIaUUpRoFUsyaBZHQKXoZzr/sE91fZQoaAZoCWgPQwjGpL+XwgsvwJSGlFKUaBVLMmgWR0Cl6BYiPhhqdX2UKGgGaAloD0MIbY5zm3BHMcCUhpRSlGgVSzJoFkdApefIwqRU3nV9lChoBmgJaA9DCIoFvqJbezjAlIaUUpRoFUsyaBZHQKXqXoNd7fJ1fZQoaAZoCWgPQwhIUz2Zf2pIwJSGlFKUaBVLMmgWR0Cl6g6KUFB6dX2UKGgGaAloD0MI/irAd5tHF8CUhpRSlGgVSzJoFkdApem9eIEbHnV9lChoBmgJaA9DCD21+uqqwCXAlIaUUpRoFUsyaBZHQKXpb5P/JeV1fZQoaAZoCWgPQwih98YQAFpHwJSGlFKUaBVLMmgWR0Cl7CiobXHzdX2UKGgGaAloD0MIt5xLcVX1ScCUhpRSlGgVSzJoFkdApevYnc+JQHV9lChoBmgJaA9DCIBkOnR6SjLAlIaUUpRoFUsyaBZHQKXriIfKZD11fZQoaAZoCWgPQwhcGyrG+fMpwJSGlFKUaBVLMmgWR0Cl6zoxQBPsdX2UKGgGaAloD0MI8SkAxjNCScCUhpRSlGgVSzJoFkdApe3eIoE0SHV9lChoBmgJaA9DCIyiBz4GYyrAlIaUUpRoFUsyaBZHQKXtjhH9WIZ1fZQoaAZoCWgPQwhIMqt3uCEzwJSGlFKUaBVLMmgWR0Cl7T0C7sfJdX2UKGgGaAloD0MIW9B7YwioMMCUhpRSlGgVSzJoFkdApezun0kGA3V9lChoBmgJaA9DCDasqSwKTUfAlIaUUpRoFUsyaBZHQKXveuzyBkJ1fZQoaAZoCWgPQwgib7n6sQ0ywJSGlFKUaBVLMmgWR0Cl7yq//NqydX2UKGgGaAloD0MISMSUSKIzSMCUhpRSlGgVSzJoFkdApe7aneizs3V9lChoBmgJaA9DCERssHCS+kjAlIaUUpRoFUsyaBZHQKXujE2HclB1fZQoaAZoCWgPQwgPttjts25FwJSGlFKUaBVLMmgWR0Cl8RuAZsKtdX2UKGgGaAloD0MIHec24V7DScCUhpRSlGgVSzJoFkdApfDLdepn6HV9lChoBmgJaA9DCGWKOQg6zjHAlIaUUpRoFUsyaBZHQKXwemdAgPp1fZQoaAZoCWgPQwjluFM6WC8pwJSGlFKUaBVLMmgWR0Cl8Cv+4smOdX2UKGgGaAloD0MIeNMtO8R/EcCUhpRSlGgVSzJoFkdApfJjEUCaJHV9lChoBmgJaA9DCIGVQ4tsnULAlIaUUpRoFUsyaBZHQKXyEi/O+qR1fZQoaAZoCWgPQwi7m6c65EYCwJSGlFKUaBVLMmgWR0Cl8cA+pwS8dX2UKGgGaAloD0MIP6vMlNbXLcCUhpRSlGgVSzJoFkdApfFxAprk83V9lChoBmgJaA9DCLwEpz6QNDDAlIaUUpRoFUsyaBZHQKXzZpwCKaZ1fZQoaAZoCWgPQwgx0ova/f4xwJSGlFKUaBVLMmgWR0Cl8xWmHgxbdX2UKGgGaAloD0MIg1Dex9FIM8CUhpRSlGgVSzJoFkdApfLDyYoiLXV9lChoBmgJaA9DCLMkQE0tSzDAlIaUUpRoFUsyaBZHQKXydJDE3sJ1fZQoaAZoCWgPQwiemPViKBNGwJSGlFKUaBVLMmgWR0Cl9FBtUGVzdX2UKGgGaAloD0MIgjgPJzDHQ8CUhpRSlGgVSzJoFkdApfP/ddmg8XV9lChoBmgJaA9DCBxF1hpKt0XAlIaUUpRoFUsyaBZHQKXzrZHNHH51fZQoaAZoCWgPQwivQzUlWVFEwJSGlFKUaBVLMmgWR0Cl815BcAzYdX2UKGgGaAloD0MIhT5YxobuJ8CUhpRSlGgVSzJoFkdApfVTrNW2gHV9lChoBmgJaA9DCOAT61T5CjLAlIaUUpRoFUsyaBZHQKX1Argflp51fZQoaAZoCWgPQwiw4lRrYWYZwJSGlFKUaBVLMmgWR0Cl9LDWK/EgdX2UKGgGaAloD0MIeESF6ubiK8CUhpRSlGgVSzJoFkdApfRhpaiblXV9lChoBmgJaA9DCPRtwVJd9D3AlIaUUpRoFUsyaBZHQKX2SMBp5/t1fZQoaAZoCWgPQwhJoMGmzhM4wJSGlFKUaBVLMmgWR0Cl9ffRVp9JdX2UKGgGaAloD0MIZeQs7GmfJ8CUhpRSlGgVSzJoFkdApfWl4HHFP3V9lChoBmgJaA9DCI6QgTy7PC/AlIaUUpRoFUsyaBZHQKX1Vr433pR1fZQoaAZoCWgPQwiT/IhfsVpAwJSGlFKUaBVLMmgWR0Cl9zmI9C/odX2UKGgGaAloD0MIAOSECaNhIMCUhpRSlGgVSzJoFkdApfboxSHdoHV9lChoBmgJaA9DCBSuR+F6BDDAlIaUUpRoFUsyaBZHQKX2luVHFxZ1fZQoaAZoCWgPQwg0L4fdd3whwJSGlFKUaBVLMmgWR0Cl9ke5WilBdX2UKGgGaAloD0MIF4OHad92RcCUhpRSlGgVSzJoFkdApfgiWiUPhHV9lChoBmgJaA9DCGlVSzrKE0XAlIaUUpRoFUsyaBZHQKX30WUr08N1fZQoaAZoCWgPQwjgERWqm7lFwJSGlFKUaBVLMmgWR0Cl93+S8rZrdX2UKGgGaAloD0MI04OCUrQGPMCUhpRSlGgVSzJoFkdApfcwR5C4SnV9lChoBmgJaA9DCCTwh5//XEbAlIaUUpRoFUsyaBZHQKX5CE5hjON1fZQoaAZoCWgPQwie0OtP4ldFwJSGlFKUaBVLMmgWR0Cl+LdU0elsdX2UKGgGaAloD0MIXXAGf79IRsCUhpRSlGgVSzJoFkdApfhlb1RLsnV9lChoBmgJaA9DCJl+iXjrPB3AlIaUUpRoFUsyaBZHQKX4FjR2KVJ1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ccf11e59ce733653d6fde73e9fc0dda15d21e85e89ac4c6308da9c6cd2159fc
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8b51b56e34828b0f78338ce698338b97e095f0633b538b3404c9a3eede528a6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3a3a273c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3a3a267e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688786782229220810, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0E+4PmQD77umiQ8/0E+4PmQD77umiQ8/0E+4PmQD77umiQ8/0E+4PmQD77umiQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMQKKv/tqgzyMu7W/u1mAP+i+p79/M2m/qSanPvNfDr+rbqc/JH0DPjH0sT/Kx20/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQT7g+ZAPvu6aJDz+2+EM8GIDYOTimHjzQT7g+ZAPvu6aJDz+2+EM8GIDYOTimHjzQT7g+ZAPvu6aJDz+2+EM8GIDYOTimHjzQT7g+ZAPvu6aJDz+2+EM8GIDYOTimHjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.35998392 -0.00729411 0.5606941 ]\n [ 0.35998392 -0.00729411 0.5606941 ]\n [ 0.35998392 -0.00729411 0.5606941 ]\n [ 0.35998392 -0.00729411 0.5606941 ]]", "desired_goal": "[[-1.0781919 0.01604222 -1.419786 ]\n [ 1.0027384 -1.3105135 -0.910942 ]\n [ 0.32646683 -0.55615157 1.3080648 ]\n [ 0.12840706 1.3902646 0.9288298 ]]", "observation": "[[ 3.5998392e-01 -7.2941054e-03 5.6069410e-01 1.1961153e-02\n 4.1294168e-04 9.6831843e-03]\n [ 3.5998392e-01 -7.2941054e-03 5.6069410e-01 1.1961153e-02\n 4.1294168e-04 9.6831843e-03]\n [ 3.5998392e-01 -7.2941054e-03 5.6069410e-01 1.1961153e-02\n 4.1294168e-04 9.6831843e-03]\n [ 3.5998392e-01 -7.2941054e-03 5.6069410e-01 1.1961153e-02\n 4.1294168e-04 9.6831843e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdmwEPhglmb0xr28+r5sNPpXkCT5iElg+KHEZPUw2VzwS2/o8qJ/cPa4tAr4U6F0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12932 -0.07477778 0.23406674]\n [ 0.1382892 0.13466103 0.21100762]\n [ 0.03746143 0.0131355 0.03062204]\n [ 0.1077264 -0.12712738 0.21670562]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8IY0KnCWM8CUhpRSlIwBbJRLMowBdJRHQKXcNc0tRN11fZQoaAZoCWgPQwjNAu0OKW49wJSGlFKUaBVLMmgWR0Cl2+TXBguzdX2UKGgGaAloD0MIMzLIXYThMMCUhpRSlGgVSzJoFkdApduTa4+bE3V9lChoBmgJaA9DCBYVcTrJQjbAlIaUUpRoFUsyaBZHQKXbRKXfIjp1fZQoaAZoCWgPQwg7VFOSdYhMwJSGlFKUaBVLMmgWR0Cl3StVaOghdX2UKGgGaAloD0MIPPiJA+gDN8CUhpRSlGgVSzJoFkdApdzaXfIjnnV9lChoBmgJaA9DCDoIOlrVOjbAlIaUUpRoFUsyaBZHQKXciHrQgLZ1fZQoaAZoCWgPQwgvih74GAg8wJSGlFKUaBVLMmgWR0Cl3DlUIcBEdX2UKGgGaAloD0MIbR/ylqtxRsCUhpRSlGgVSzJoFkdApd42W4Vh1HV9lChoBmgJaA9DCOGX+nlTCSfAlIaUUpRoFUsyaBZHQKXd5fQa73B1fZQoaAZoCWgPQwgllL4Qcg4dwJSGlFKUaBVLMmgWR0Cl3ZQw0wajdX2UKGgGaAloD0MIgVoMHqaZRsCUhpRSlGgVSzJoFkdApd1E/QjUu3V9lChoBmgJaA9DCNEi2/l+hkfAlIaUUpRoFUsyaBZHQKXfQ3Ov+wV1fZQoaAZoCWgPQwiFB82ue3MuwJSGlFKUaBVLMmgWR0Cl3vMBQvYfdX2UKGgGaAloD0MIwvf+Bu0hS8CUhpRSlGgVSzJoFkdApd6hHoX9BXV9lChoBmgJaA9DCIlhhzHp5zTAlIaUUpRoFUsyaBZHQKXeUee4Cp51fZQoaAZoCWgPQwgYJH1aRYcwwJSGlFKUaBVLMmgWR0Cl4HbNB4UvdX2UKGgGaAloD0MImdcRh2w4L8CUhpRSlGgVSzJoFkdApeAmcUdq+XV9lChoBmgJaA9DCE563/jaCzDAlIaUUpRoFUsyaBZHQKXf1UPxx1h1fZQoaAZoCWgPQwgabVUS2dcqwJSGlFKUaBVLMmgWR0Cl34dU83dcdX2UKGgGaAloD0MI9tN/1vxIScCUhpRSlGgVSzJoFkdApeGf6KtPpXV9lChoBmgJaA9DCOdSXFX29SzAlIaUUpRoFUsyaBZHQKXhTvhqCYl1fZQoaAZoCWgPQwjuQ95y9XMvwJSGlFKUaBVLMmgWR0Cl4P2iL2pRdX2UKGgGaAloD0MIGO3xQjosKMCUhpRSlGgVSzJoFkdApeCucBltj3V9lChoBmgJaA9DCI+Oq5FdCS7AlIaUUpRoFUsyaBZHQKXisg8r7O51fZQoaAZoCWgPQwgibk4lAywwwJSGlFKUaBVLMmgWR0Cl4mK0UoKEdX2UKGgGaAloD0MItMh2vp9aKcCUhpRSlGgVSzJoFkdApeIRlxwQ2HV9lChoBmgJaA9DCNANTdnpxy3AlIaUUpRoFUsyaBZHQKXhwzFdcB51fZQoaAZoCWgPQwh9IHnnUKJIwJSGlFKUaBVLMmgWR0Cl48cPWhAXdX2UKGgGaAloD0MIU5J1OLqSMsCUhpRSlGgVSzJoFkdApeN2oBJZn3V9lChoBmgJaA9DCFt6NNWTsTDAlIaUUpRoFUsyaBZHQKXjJMuez2R1fZQoaAZoCWgPQwjr5AzFHfcjwJSGlFKUaBVLMmgWR0Cl4tWUjcEedX2UKGgGaAloD0MIZTiez4B2R8CUhpRSlGgVSzJoFkdApeTZ4QjD9HV9lChoBmgJaA9DCHCUvDrH8CbAlIaUUpRoFUsyaBZHQKXkiPIXCTF1fZQoaAZoCWgPQwicU8kAUMU2wJSGlFKUaBVLMmgWR0Cl5DeI2wV1dX2UKGgGaAloD0MIW0I+6NmsFMCUhpRSlGgVSzJoFkdApePoVCXyAnV9lChoBmgJaA9DCESJljyeDifAlIaUUpRoFUsyaBZHQKXl/fUnXup1fZQoaAZoCWgPQwh73SIw1i83wJSGlFKUaBVLMmgWR0Cl5a1zIV/MdX2UKGgGaAloD0MIPNujN9zzNsCUhpRSlGgVSzJoFkdApeVcDfWMCXV9lChoBmgJaA9DCBoVONkGPifAlIaUUpRoFUsyaBZHQKXlDPYWcjJ1fZQoaAZoCWgPQwh6yJQPQfNIwJSGlFKUaBVLMmgWR0Cl5v8g6ltTdX2UKGgGaAloD0MIjrETXoJPM8CUhpRSlGgVSzJoFkdApeauqWC2+nV9lChoBmgJaA9DCNR9AFKb2CDAlIaUUpRoFUsyaBZHQKXmXMr3Cbd1fZQoaAZoCWgPQwhFSrN5HDZKwJSGlFKUaBVLMmgWR0Cl5g2Xb/OudX2UKGgGaAloD0MINiOD3EXiR8CUhpRSlGgVSzJoFkdApei3ZTQ3P3V9lChoBmgJaA9DCOF6FK5Hj0LAlIaUUpRoFUsyaBZHQKXoZzr/sE91fZQoaAZoCWgPQwjGpL+XwgsvwJSGlFKUaBVLMmgWR0Cl6BYiPhhqdX2UKGgGaAloD0MIbY5zm3BHMcCUhpRSlGgVSzJoFkdApefIwqRU3nV9lChoBmgJaA9DCIoFvqJbezjAlIaUUpRoFUsyaBZHQKXqXoNd7fJ1fZQoaAZoCWgPQwhIUz2Zf2pIwJSGlFKUaBVLMmgWR0Cl6g6KUFB6dX2UKGgGaAloD0MI/irAd5tHF8CUhpRSlGgVSzJoFkdApem9eIEbHnV9lChoBmgJaA9DCD21+uqqwCXAlIaUUpRoFUsyaBZHQKXpb5P/JeV1fZQoaAZoCWgPQwih98YQAFpHwJSGlFKUaBVLMmgWR0Cl7CiobXHzdX2UKGgGaAloD0MIt5xLcVX1ScCUhpRSlGgVSzJoFkdApevYnc+JQHV9lChoBmgJaA9DCIBkOnR6SjLAlIaUUpRoFUsyaBZHQKXriIfKZD11fZQoaAZoCWgPQwhcGyrG+fMpwJSGlFKUaBVLMmgWR0Cl6zoxQBPsdX2UKGgGaAloD0MI8SkAxjNCScCUhpRSlGgVSzJoFkdApe3eIoE0SHV9lChoBmgJaA9DCIyiBz4GYyrAlIaUUpRoFUsyaBZHQKXtjhH9WIZ1fZQoaAZoCWgPQwhIMqt3uCEzwJSGlFKUaBVLMmgWR0Cl7T0C7sfJdX2UKGgGaAloD0MIW9B7YwioMMCUhpRSlGgVSzJoFkdApezun0kGA3V9lChoBmgJaA9DCDasqSwKTUfAlIaUUpRoFUsyaBZHQKXveuzyBkJ1fZQoaAZoCWgPQwgib7n6sQ0ywJSGlFKUaBVLMmgWR0Cl7yq//NqydX2UKGgGaAloD0MISMSUSKIzSMCUhpRSlGgVSzJoFkdApe7aneizs3V9lChoBmgJaA9DCERssHCS+kjAlIaUUpRoFUsyaBZHQKXujE2HclB1fZQoaAZoCWgPQwgPttjts25FwJSGlFKUaBVLMmgWR0Cl8RuAZsKtdX2UKGgGaAloD0MIHec24V7DScCUhpRSlGgVSzJoFkdApfDLdepn6HV9lChoBmgJaA9DCGWKOQg6zjHAlIaUUpRoFUsyaBZHQKXwemdAgPp1fZQoaAZoCWgPQwjluFM6WC8pwJSGlFKUaBVLMmgWR0Cl8Cv+4smOdX2UKGgGaAloD0MIeNMtO8R/EcCUhpRSlGgVSzJoFkdApfJjEUCaJHV9lChoBmgJaA9DCIGVQ4tsnULAlIaUUpRoFUsyaBZHQKXyEi/O+qR1fZQoaAZoCWgPQwi7m6c65EYCwJSGlFKUaBVLMmgWR0Cl8cA+pwS8dX2UKGgGaAloD0MIP6vMlNbXLcCUhpRSlGgVSzJoFkdApfFxAprk83V9lChoBmgJaA9DCLwEpz6QNDDAlIaUUpRoFUsyaBZHQKXzZpwCKaZ1fZQoaAZoCWgPQwgx0ova/f4xwJSGlFKUaBVLMmgWR0Cl8xWmHgxbdX2UKGgGaAloD0MIg1Dex9FIM8CUhpRSlGgVSzJoFkdApfLDyYoiLXV9lChoBmgJaA9DCLMkQE0tSzDAlIaUUpRoFUsyaBZHQKXydJDE3sJ1fZQoaAZoCWgPQwiemPViKBNGwJSGlFKUaBVLMmgWR0Cl9FBtUGVzdX2UKGgGaAloD0MIgjgPJzDHQ8CUhpRSlGgVSzJoFkdApfP/ddmg8XV9lChoBmgJaA9DCBxF1hpKt0XAlIaUUpRoFUsyaBZHQKXzrZHNHH51fZQoaAZoCWgPQwivQzUlWVFEwJSGlFKUaBVLMmgWR0Cl815BcAzYdX2UKGgGaAloD0MIhT5YxobuJ8CUhpRSlGgVSzJoFkdApfVTrNW2gHV9lChoBmgJaA9DCOAT61T5CjLAlIaUUpRoFUsyaBZHQKX1Argflp51fZQoaAZoCWgPQwiw4lRrYWYZwJSGlFKUaBVLMmgWR0Cl9LDWK/EgdX2UKGgGaAloD0MIeESF6ubiK8CUhpRSlGgVSzJoFkdApfRhpaiblXV9lChoBmgJaA9DCPRtwVJd9D3AlIaUUpRoFUsyaBZHQKX2SMBp5/t1fZQoaAZoCWgPQwhJoMGmzhM4wJSGlFKUaBVLMmgWR0Cl9ffRVp9JdX2UKGgGaAloD0MIZeQs7GmfJ8CUhpRSlGgVSzJoFkdApfWl4HHFP3V9lChoBmgJaA9DCI6QgTy7PC/AlIaUUpRoFUsyaBZHQKX1Vr433pR1fZQoaAZoCWgPQwiT/IhfsVpAwJSGlFKUaBVLMmgWR0Cl9zmI9C/odX2UKGgGaAloD0MIAOSECaNhIMCUhpRSlGgVSzJoFkdApfboxSHdoHV9lChoBmgJaA9DCBSuR+F6BDDAlIaUUpRoFUsyaBZHQKX2luVHFxZ1fZQoaAZoCWgPQwg0L4fdd3whwJSGlFKUaBVLMmgWR0Cl9ke5WilBdX2UKGgGaAloD0MIF4OHad92RcCUhpRSlGgVSzJoFkdApfgiWiUPhHV9lChoBmgJaA9DCGlVSzrKE0XAlIaUUpRoFUsyaBZHQKX30WUr08N1fZQoaAZoCWgPQwjgERWqm7lFwJSGlFKUaBVLMmgWR0Cl93+S8rZrdX2UKGgGaAloD0MI04OCUrQGPMCUhpRSlGgVSzJoFkdApfcwR5C4SnV9lChoBmgJaA9DCCTwh5//XEbAlIaUUpRoFUsyaBZHQKX5CE5hjON1fZQoaAZoCWgPQwie0OtP4ldFwJSGlFKUaBVLMmgWR0Cl+LdU0elsdX2UKGgGaAloD0MIXXAGf79IRsCUhpRSlGgVSzJoFkdApfhlb1RLsnV9lChoBmgJaA9DCJl+iXjrPB3AlIaUUpRoFUsyaBZHQKX4FjR2KVJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (528 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -24.16629275903106, "std_reward": 12.293013444388286, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-08T04:14:21.113775"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c739b7342f422dbc2bd85c2c444006d9271b9a8ba2c7af9fe57965b2103b367b
3
+ size 2387