--- library_name: transformers license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-hi tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: opusmt-finetuned-kde4-hi-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-hi split: train args: en-hi metrics: - name: Bleu type: bleu value: 15.26373673890456 --- # opusmt-finetuned-kde4-hi-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-hi](https://huggingface.co/Helsinki-NLP/opus-mt-en-hi) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 2.3583 - Model Preparation Time: 0.0203 - Bleu: 15.2637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3