Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1976.73 +/- 115.89
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b37faf307a26f01035891e128fc16c598ccfd7ed47c2806816a32bb9aa7bb58
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f32d9c0fca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32d9c0fd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32d9c0fdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32d9c0fe50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f32d9c0fee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f32d9c0ff70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32d9c11040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32d9c110d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f32d9c11160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32d9c111f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32d9c11280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32d9c11310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f32d9c8ae80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679680660090772543,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEl25bxO03K+IlECPzUNBD6/pKY+m88jP0sIKD5IbGa97hcnPxcI27xIQeq+N7y7PXQeBr1KQpQ/j6Gyva0LBD87n4Y/EycsQBCc3LxCzwO/6sIEv+hTwT3ns1g+8hAwPtqaiL8/uA4//3/+PtX/fD/gCH1Al90WvXRXBj/+r5+/0oJ4PAhPHD67gpU+jgZCP8vx77/A6C8/bjIQwK3EpT+2Dk0/YojJPtPyJkBaINS/kKsCv9M9vb4xJiFAjQBdv1R7mD9ASDm/vBoiwB8+iD/amoi/zJjlvyLBAMCjhIG/gvWEP5aVJj/gQaw+r6m8P97qN7+0L7m+DpgRvorskr180B8/HTgTvgeXYj+drhs/8PCXv8bx3T6ZR98+BfP4v7FCu795LA+/mcutvq8yB0BruHK+2J0qPm3si7/iqY4+0N9vP8yY5b//f/4+o4SBv2murL3WSM4/fA4xvwt5iz8HpStAaoS7PkZw+L7+ZzK+dk4rPbcjMcD6q2K/8hNUP2gItT9knNy+o0w6P5YCM74X5oE/wlC6vzKC3r4coGQ9vvyhPitlRsDt3VA/eKTsvtqaiL8/uA4//3/+PtX/fD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACrcRU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASLmXvQAAAACWuwDAAAAAAGTphL0AAAAAohbzPwAAAACLzks9AAAAADHs7T8AAAAAw64KvQAAAACpqvy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7IttgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMxjN7wAAAAAo9T4vwAAAADiGJi9AAAAALAL8D8AAAAAwWmJPQAAAAC8q/Q/AAAAANid5D0AAAAAm5/zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACq2ozYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICi9qu9AAAAAK/XAMAAAAAAGD5dPQAAAACPAPw/AAAAABHsDT4AAAAA1534PwAAAACVI4M9AAAAADpz8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtBIm0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA56jMvQAAAACU/9i/AAAAAPB5XLoAAAAAIWr0PwAAAAAwgMm9AAAAAMfE3T8AAAAAyetMPAAAAADMlue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJEvXMW43FWMAWyUTegDjAF0lEdAqOQXBnBciXV9lChoBkdAkBA7S/j81mgHTegDaAhHQKjkee/5+H91fZQoaAZHQJO6f557gKpoB03oA2gIR0Co5Vtd7fHhdX2UKGgGR0CJBHl9Sde6aAdN6ANoCEdAqOodSKm8/XV9lChoBkdAjLKXEIgNgGgHTegDaAhHQKjwDhNucc51fZQoaAZHQIG7hJul41RoB03oA2gIR0Co8HOc2BJ7dX2UKGgGR0CKc4dpZfUnaAdN6ANoCEdAqPE8L+glGHV9lChoBkdAejV6vq1PWWgHTegDaAhHQKj2CTyrgfl1fZQoaAZHQHw4O3pfQa9oB03oA2gIR0Co/tk7GNrCdX2UKGgGR0CW76u+h4+saAdN6ANoCEdAqP9zD2rXDnV9lChoBkdAgvVE078vVWgHTegDaAhHQKkAhUEPlMh1fZQoaAZHQJTZGfg75mBoB03oA2gIR0CpBS6G5+YudX2UKGgGR0CXS4Dk2gnMaAdN6ANoCEdAqQr88ifQKXV9lChoBkdAluc/TLGJemgHTegDaAhHQKkLWZtvXK91fZQoaAZHQJcx0189fTloB03oA2gIR0CpDCdQGfPHdX2UKGgGR0CWqV4QjD8+aAdN6ANoCEdAqRC8o0ALiXV9lChoBkdAkkfJxBE8aGgHTegDaAhHQKkXjbFCLMt1fZQoaAZHQJMHCNbTtsxoB03oA2gIR0CpGBrg4wRHdX2UKGgGR0CVEMOxjawmaAdN6ANoCEdAqRlQOSW7e3V9lChoBkdAjuDGOU+s5mgHTegDaAhHQKkfkkYXO4Z1fZQoaAZHQJLUkv4/NaBoB03oA2gIR0CpJWac7QsxdX2UKGgGR0CCiw2+fywwaAdN6ANoCEdAqSXIhY/3WXV9lChoBkdAkqGH7gsK9mgHTegDaAhHQKkmji+cpb51fZQoaAZHQJBu29QGfPJoB03oA2gIR0CpKyO5J9RadX2UKGgGR0CVGXW0Z3s5aAdN6ANoCEdAqTDNyWAwwnV9lChoBkdAkCHnpbD/EWgHTegDaAhHQKkxLaXa8Hx1fZQoaAZHQJS2CZG8VYZoB03oA2gIR0CpMgo9TxXodX2UKGgGR0CShL25xzaLaAdN6ANoCEdAqTj6D5CWvHV9lChoBkdAmeL6OPvKEGgHTegDaAhHQKk/fghKUV11fZQoaAZHQJtCZPgvUSZoB03oA2gIR0CpP93xWkrPdX2UKGgGR0CYyAtjkMkQaAdN6ANoCEdAqUClc6eXiXV9lChoBkdAmMwmgam4zGgHTegDaAhHQKlFIghbGFV1fZQoaAZHQJtEwVM23rloB03oA2gIR0CpSsVObiIddX2UKGgGR0CZ4w2ZRbbDaAdN6ANoCEdAqUsnaL4ve3V9lChoBkdAmhjGGATZhGgHTegDaAhHQKlL891U2k11fZQoaAZHQJftsYixFApoB03oA2gIR0CpURSX2M86dX2UKGgGR0CX1l1QIldDaAdN6ANoCEdAqVlx5/smfHV9lChoBkdAlIqdUXHim2gHTegDaAhHQKlZ08IzFdd1fZQoaAZHQJkVp5Qgs9VoB03oA2gIR0CpWp35N47jdX2UKGgGR0CZzlS2Yv38aAdN6ANoCEdAqV9l67dzn3V9lChoBkdAmHCPZM+NcWgHTegDaAhHQKllLdWQwK11fZQoaAZHQJkTvN4Z/CtoB03oA2gIR0CpZY1k1/DtdX2UKGgGR0CchmDcuanaaAdN6ANoCEdAqWZVzjm0V3V9lChoBkdAnR/bK7qY7mgHTegDaAhHQKlq/pyp71J1fZQoaAZHQJV2ul+EytVoB03oA2gIR0CpclugQHzIdX2UKGgGR0CbmWSQYDT0aAdN6ANoCEdAqXLuKoAGS3V9lChoBkdAmM5ocR15jmgHTegDaAhHQKl0JqmCROl1fZQoaAZHQJj48FINEw5oB03oA2gIR0CpeYcstkFwdX2UKGgGR0CYTZldTo+waAdN6ANoCEdAqX8oIldC3XV9lChoBkdAnFDupOvdM2gHTegDaAhHQKl/hlCCz1N1fZQoaAZHQJpSQi9qUNdoB03oA2gIR0CpgFXT3IuHdX2UKGgGR0CcOs/yGzrvaAdN6ANoCEdAqYUUCNjslnV9lChoBkdAmfsuN96Tn2gHTegDaAhHQKmK1Av+OwR1fZQoaAZHQJo4eD7IkqtoB03oA2gIR0Cpi2FKkEcLdX2UKGgGR0CaxoSBbwBpaAdN6ANoCEdAqYyA+bExZnV9lChoBkdAmee13IMjNmgHTegDaAhHQKmTiRnvlU91fZQoaAZHQJtV+Awwj+toB03oA2gIR0CpmXhEjPfLdX2UKGgGR0CcgFgntv4uaAdN6ANoCEdAqZnVsxfv4XV9lChoBkdAmdY7xusLfGgHTegDaAhHQKmaoY1pCa91fZQoaAZHQJ0Ik88s+V1oB03oA2gIR0Cpn1W4NI9UdX2UKGgGR0CaJeg0j1PFaAdN6ANoCEdAqaT7g62fCnV9lChoBkdAnJidnCfpU2gHTegDaAhHQKmlW1SflIV1fZQoaAZHQJrlKKhtcfNoB03oA2gIR0CppiZdv864dX2UKGgGR0Cd6x1cdHUdaAdN6ANoCEdAqav7DGcWkHV9lChoBkdAm6SizTnaFmgHTegDaAhHQKmzy91U2k11fZQoaAZHQJ0Jb1RLsa9oB03oA2gIR0CptC+JHiFTdX2UKGgGR0CaV51lGwzMaAdN6ANoCEdAqbT4Hoouw3V9lChoBkdAmtQnkPtlZ2gHTegDaAhHQKm5gxdpqRF1fZQoaAZHQJtC2RB/qgRoB03oA2gIR0CpvyGaH9FXdX2UKGgGR0CcXZ4YaYNRaAdN6ANoCEdAqb+AEGJN03V9lChoBkdAnP4MbJfYz2gHTegDaAhHQKnASD7qIJt1fZQoaAZHQJp6/nEETxpoB03oA2gIR0CpxNO2iL2pdX2UKGgGR0Cbp4r6+FlDaAdN6ANoCEdAqcy1/lQuVXV9lChoBkdAm3Myq2jO9mgHTegDaAhHQKnNSaef7Jp1fZQoaAZHQJ5oOP91loVoB03oA2gIR0Cpzn23azu4dX2UKGgGR0CaYo24NI9UaAdN6ANoCEdAqdOXaakRBnV9lChoBkdAmn5Swr1/UmgHTegDaAhHQKnZNuLrHEN1fZQoaAZHQJyXGDDjzZpoB03oA2gIR0Cp2ZN/vv0AdX2UKGgGR0CcFS7b+Lm7aAdN6ANoCEdAqdpcIiTt9nV9lChoBkdAmg/xplBhQWgHTegDaAhHQKnfMD15B1N1fZQoaAZHQJzHXqJMxoJoB03oA2gIR0Cp5V3gDRtxdX2UKGgGR0Cc2WUEPlMiaAdN6ANoCEdAqeXokmhM8HV9lChoBkdAnaULaM72c2gHTegDaAhHQKnnG7tAs051fZQoaAZHQJuYhsBQvYhoB03oA2gIR0Cp7fOF6AvtdX2UKGgGR0Ce3cllsguAaAdN6ANoCEdAqfOOus90R3V9lChoBkdAnBts3ZPEbmgHTegDaAhHQKnz7DVpbll1fZQoaAZHQJnTCuRs/INoB03oA2gIR0Cp9LC97F85dX2UKGgGR0CfPWJXhfjTaAdN6ANoCEdAqflEMb3oLXV9lChoBkdAn1bqKYRdyGgHTegDaAhHQKn+7Htnf2t1fZQoaAZHQJvMyOFQEZBoB03oA2gIR0Cp/0zrmhdudX2UKGgGR0Cf0MB/qgRLaAdN6ANoCEdAqgASAMDwIHV9lChoBkdAn7PyaiKziWgHTegDaAhHQKoGWWhysCF1fZQoaAZHQJ5LbE2pAD9oB03oA2gIR0CqDb9FWn0kdX2UKGgGR0CfPQ97ngYQaAdN6ANoCEdAqg4dXYDkl3V9lChoBkdAnUMZpJwsG2gHTegDaAhHQKoO4lUIcBF1fZQoaAZHQJ265NahYeVoB03oA2gIR0CqE4aQFLWadX2UKGgGR0CfDWe4TbnHaAdN6ANoCEdAqhkktmL9/HV9lChoBkdAmgF5mEoOQWgHTegDaAhHQKoZkZhKDkF1fZQoaAZHQJr/S0G/vfFoB03oA2gIR0CqGnhgmZ3LdX2UKGgGR0CgliexOclPaAdN6ANoCEdAqh8fGjsUqXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24217131b64704aa42a34467443214c09222ce982f2b0d036f6adb155cb0e2e8
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e7ac87a11f43773d1d7fcda0ff6f1e7255574327ce4a19c9b5146ad2b0f1dbc
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32d9c0fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32d9c0fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32d9c0fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32d9c0fe50>", "_build": "<function ActorCriticPolicy._build at 0x7f32d9c0fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f32d9c0ff70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32d9c11040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32d9c110d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f32d9c11160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32d9c111f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32d9c11280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32d9c11310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f32d9c8ae80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679680660090772543, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEl25bxO03K+IlECPzUNBD6/pKY+m88jP0sIKD5IbGa97hcnPxcI27xIQeq+N7y7PXQeBr1KQpQ/j6Gyva0LBD87n4Y/EycsQBCc3LxCzwO/6sIEv+hTwT3ns1g+8hAwPtqaiL8/uA4//3/+PtX/fD/gCH1Al90WvXRXBj/+r5+/0oJ4PAhPHD67gpU+jgZCP8vx77/A6C8/bjIQwK3EpT+2Dk0/YojJPtPyJkBaINS/kKsCv9M9vb4xJiFAjQBdv1R7mD9ASDm/vBoiwB8+iD/amoi/zJjlvyLBAMCjhIG/gvWEP5aVJj/gQaw+r6m8P97qN7+0L7m+DpgRvorskr180B8/HTgTvgeXYj+drhs/8PCXv8bx3T6ZR98+BfP4v7FCu795LA+/mcutvq8yB0BruHK+2J0qPm3si7/iqY4+0N9vP8yY5b//f/4+o4SBv2murL3WSM4/fA4xvwt5iz8HpStAaoS7PkZw+L7+ZzK+dk4rPbcjMcD6q2K/8hNUP2gItT9knNy+o0w6P5YCM74X5oE/wlC6vzKC3r4coGQ9vvyhPitlRsDt3VA/eKTsvtqaiL8/uA4//3/+PtX/fD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACrcRU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASLmXvQAAAACWuwDAAAAAAGTphL0AAAAAohbzPwAAAACLzks9AAAAADHs7T8AAAAAw64KvQAAAACpqvy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7IttgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMxjN7wAAAAAo9T4vwAAAADiGJi9AAAAALAL8D8AAAAAwWmJPQAAAAC8q/Q/AAAAANid5D0AAAAAm5/zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACq2ozYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICi9qu9AAAAAK/XAMAAAAAAGD5dPQAAAACPAPw/AAAAABHsDT4AAAAA1534PwAAAACVI4M9AAAAADpz8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtBIm0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA56jMvQAAAACU/9i/AAAAAPB5XLoAAAAAIWr0PwAAAAAwgMm9AAAAAMfE3T8AAAAAyetMPAAAAADMlue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJEvXMW43FWMAWyUTegDjAF0lEdAqOQXBnBciXV9lChoBkdAkBA7S/j81mgHTegDaAhHQKjkee/5+H91fZQoaAZHQJO6f557gKpoB03oA2gIR0Co5Vtd7fHhdX2UKGgGR0CJBHl9Sde6aAdN6ANoCEdAqOodSKm8/XV9lChoBkdAjLKXEIgNgGgHTegDaAhHQKjwDhNucc51fZQoaAZHQIG7hJul41RoB03oA2gIR0Co8HOc2BJ7dX2UKGgGR0CKc4dpZfUnaAdN6ANoCEdAqPE8L+glGHV9lChoBkdAejV6vq1PWWgHTegDaAhHQKj2CTyrgfl1fZQoaAZHQHw4O3pfQa9oB03oA2gIR0Co/tk7GNrCdX2UKGgGR0CW76u+h4+saAdN6ANoCEdAqP9zD2rXDnV9lChoBkdAgvVE078vVWgHTegDaAhHQKkAhUEPlMh1fZQoaAZHQJTZGfg75mBoB03oA2gIR0CpBS6G5+YudX2UKGgGR0CXS4Dk2gnMaAdN6ANoCEdAqQr88ifQKXV9lChoBkdAluc/TLGJemgHTegDaAhHQKkLWZtvXK91fZQoaAZHQJcx0189fTloB03oA2gIR0CpDCdQGfPHdX2UKGgGR0CWqV4QjD8+aAdN6ANoCEdAqRC8o0ALiXV9lChoBkdAkkfJxBE8aGgHTegDaAhHQKkXjbFCLMt1fZQoaAZHQJMHCNbTtsxoB03oA2gIR0CpGBrg4wRHdX2UKGgGR0CVEMOxjawmaAdN6ANoCEdAqRlQOSW7e3V9lChoBkdAjuDGOU+s5mgHTegDaAhHQKkfkkYXO4Z1fZQoaAZHQJLUkv4/NaBoB03oA2gIR0CpJWac7QsxdX2UKGgGR0CCiw2+fywwaAdN6ANoCEdAqSXIhY/3WXV9lChoBkdAkqGH7gsK9mgHTegDaAhHQKkmji+cpb51fZQoaAZHQJBu29QGfPJoB03oA2gIR0CpKyO5J9RadX2UKGgGR0CVGXW0Z3s5aAdN6ANoCEdAqTDNyWAwwnV9lChoBkdAkCHnpbD/EWgHTegDaAhHQKkxLaXa8Hx1fZQoaAZHQJS2CZG8VYZoB03oA2gIR0CpMgo9TxXodX2UKGgGR0CShL25xzaLaAdN6ANoCEdAqTj6D5CWvHV9lChoBkdAmeL6OPvKEGgHTegDaAhHQKk/fghKUV11fZQoaAZHQJtCZPgvUSZoB03oA2gIR0CpP93xWkrPdX2UKGgGR0CYyAtjkMkQaAdN6ANoCEdAqUClc6eXiXV9lChoBkdAmMwmgam4zGgHTegDaAhHQKlFIghbGFV1fZQoaAZHQJtEwVM23rloB03oA2gIR0CpSsVObiIddX2UKGgGR0CZ4w2ZRbbDaAdN6ANoCEdAqUsnaL4ve3V9lChoBkdAmhjGGATZhGgHTegDaAhHQKlL891U2k11fZQoaAZHQJftsYixFApoB03oA2gIR0CpURSX2M86dX2UKGgGR0CX1l1QIldDaAdN6ANoCEdAqVlx5/smfHV9lChoBkdAlIqdUXHim2gHTegDaAhHQKlZ08IzFdd1fZQoaAZHQJkVp5Qgs9VoB03oA2gIR0CpWp35N47jdX2UKGgGR0CZzlS2Yv38aAdN6ANoCEdAqV9l67dzn3V9lChoBkdAmHCPZM+NcWgHTegDaAhHQKllLdWQwK11fZQoaAZHQJkTvN4Z/CtoB03oA2gIR0CpZY1k1/DtdX2UKGgGR0CchmDcuanaaAdN6ANoCEdAqWZVzjm0V3V9lChoBkdAnR/bK7qY7mgHTegDaAhHQKlq/pyp71J1fZQoaAZHQJV2ul+EytVoB03oA2gIR0CpclugQHzIdX2UKGgGR0CbmWSQYDT0aAdN6ANoCEdAqXLuKoAGS3V9lChoBkdAmM5ocR15jmgHTegDaAhHQKl0JqmCROl1fZQoaAZHQJj48FINEw5oB03oA2gIR0CpeYcstkFwdX2UKGgGR0CYTZldTo+waAdN6ANoCEdAqX8oIldC3XV9lChoBkdAnFDupOvdM2gHTegDaAhHQKl/hlCCz1N1fZQoaAZHQJpSQi9qUNdoB03oA2gIR0CpgFXT3IuHdX2UKGgGR0CcOs/yGzrvaAdN6ANoCEdAqYUUCNjslnV9lChoBkdAmfsuN96Tn2gHTegDaAhHQKmK1Av+OwR1fZQoaAZHQJo4eD7IkqtoB03oA2gIR0Cpi2FKkEcLdX2UKGgGR0CaxoSBbwBpaAdN6ANoCEdAqYyA+bExZnV9lChoBkdAmee13IMjNmgHTegDaAhHQKmTiRnvlU91fZQoaAZHQJtV+Awwj+toB03oA2gIR0CpmXhEjPfLdX2UKGgGR0CcgFgntv4uaAdN6ANoCEdAqZnVsxfv4XV9lChoBkdAmdY7xusLfGgHTegDaAhHQKmaoY1pCa91fZQoaAZHQJ0Ik88s+V1oB03oA2gIR0Cpn1W4NI9UdX2UKGgGR0CaJeg0j1PFaAdN6ANoCEdAqaT7g62fCnV9lChoBkdAnJidnCfpU2gHTegDaAhHQKmlW1SflIV1fZQoaAZHQJrlKKhtcfNoB03oA2gIR0CppiZdv864dX2UKGgGR0Cd6x1cdHUdaAdN6ANoCEdAqav7DGcWkHV9lChoBkdAm6SizTnaFmgHTegDaAhHQKmzy91U2k11fZQoaAZHQJ0Jb1RLsa9oB03oA2gIR0CptC+JHiFTdX2UKGgGR0CaV51lGwzMaAdN6ANoCEdAqbT4Hoouw3V9lChoBkdAmtQnkPtlZ2gHTegDaAhHQKm5gxdpqRF1fZQoaAZHQJtC2RB/qgRoB03oA2gIR0CpvyGaH9FXdX2UKGgGR0CcXZ4YaYNRaAdN6ANoCEdAqb+AEGJN03V9lChoBkdAnP4MbJfYz2gHTegDaAhHQKnASD7qIJt1fZQoaAZHQJp6/nEETxpoB03oA2gIR0CpxNO2iL2pdX2UKGgGR0Cbp4r6+FlDaAdN6ANoCEdAqcy1/lQuVXV9lChoBkdAm3Myq2jO9mgHTegDaAhHQKnNSaef7Jp1fZQoaAZHQJ5oOP91loVoB03oA2gIR0Cpzn23azu4dX2UKGgGR0CaYo24NI9UaAdN6ANoCEdAqdOXaakRBnV9lChoBkdAmn5Swr1/UmgHTegDaAhHQKnZNuLrHEN1fZQoaAZHQJyXGDDjzZpoB03oA2gIR0Cp2ZN/vv0AdX2UKGgGR0CcFS7b+Lm7aAdN6ANoCEdAqdpcIiTt9nV9lChoBkdAmg/xplBhQWgHTegDaAhHQKnfMD15B1N1fZQoaAZHQJzHXqJMxoJoB03oA2gIR0Cp5V3gDRtxdX2UKGgGR0Cc2WUEPlMiaAdN6ANoCEdAqeXokmhM8HV9lChoBkdAnaULaM72c2gHTegDaAhHQKnnG7tAs051fZQoaAZHQJuYhsBQvYhoB03oA2gIR0Cp7fOF6AvtdX2UKGgGR0Ce3cllsguAaAdN6ANoCEdAqfOOus90R3V9lChoBkdAnBts3ZPEbmgHTegDaAhHQKnz7DVpbll1fZQoaAZHQJnTCuRs/INoB03oA2gIR0Cp9LC97F85dX2UKGgGR0CfPWJXhfjTaAdN6ANoCEdAqflEMb3oLXV9lChoBkdAn1bqKYRdyGgHTegDaAhHQKn+7Htnf2t1fZQoaAZHQJvMyOFQEZBoB03oA2gIR0Cp/0zrmhdudX2UKGgGR0Cf0MB/qgRLaAdN6ANoCEdAqgASAMDwIHV9lChoBkdAn7PyaiKziWgHTegDaAhHQKoGWWhysCF1fZQoaAZHQJ5LbE2pAD9oB03oA2gIR0CqDb9FWn0kdX2UKGgGR0CfPQ97ngYQaAdN6ANoCEdAqg4dXYDkl3V9lChoBkdAnUMZpJwsG2gHTegDaAhHQKoO4lUIcBF1fZQoaAZHQJ265NahYeVoB03oA2gIR0CqE4aQFLWadX2UKGgGR0CfDWe4TbnHaAdN6ANoCEdAqhkktmL9/HV9lChoBkdAmgF5mEoOQWgHTegDaAhHQKoZkZhKDkF1fZQoaAZHQJr/S0G/vfFoB03oA2gIR0CqGnhgmZ3LdX2UKGgGR0CgliexOclPaAdN6ANoCEdAqh8fGjsUqXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:645a57139cb002562b48797e7dc3cba62d1e7b86c6ca4652b94db4ab6ea9e93d
|
3 |
+
size 1097884
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1976.7260570834799, "std_reward": 115.88859199297008, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T19:00:50.764210"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af8767c723b39b46a2737e40b9b525b9ce30f2880df030fde61182732714373b
|
3 |
+
size 2136
|