Ellipsoul commited on
Commit
4dffa3d
·
1 Parent(s): 149eb44

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1976.73 +/- 115.89
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b37faf307a26f01035891e128fc16c598ccfd7ed47c2806816a32bb9aa7bb58
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32d9c0fca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32d9c0fd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32d9c0fdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32d9c0fe50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f32d9c0fee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f32d9c0ff70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32d9c11040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32d9c110d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f32d9c11160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32d9c111f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32d9c11280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32d9c11310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f32d9c8ae80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679680660090772543,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEl25bxO03K+IlECPzUNBD6/pKY+m88jP0sIKD5IbGa97hcnPxcI27xIQeq+N7y7PXQeBr1KQpQ/j6Gyva0LBD87n4Y/EycsQBCc3LxCzwO/6sIEv+hTwT3ns1g+8hAwPtqaiL8/uA4//3/+PtX/fD/gCH1Al90WvXRXBj/+r5+/0oJ4PAhPHD67gpU+jgZCP8vx77/A6C8/bjIQwK3EpT+2Dk0/YojJPtPyJkBaINS/kKsCv9M9vb4xJiFAjQBdv1R7mD9ASDm/vBoiwB8+iD/amoi/zJjlvyLBAMCjhIG/gvWEP5aVJj/gQaw+r6m8P97qN7+0L7m+DpgRvorskr180B8/HTgTvgeXYj+drhs/8PCXv8bx3T6ZR98+BfP4v7FCu795LA+/mcutvq8yB0BruHK+2J0qPm3si7/iqY4+0N9vP8yY5b//f/4+o4SBv2murL3WSM4/fA4xvwt5iz8HpStAaoS7PkZw+L7+ZzK+dk4rPbcjMcD6q2K/8hNUP2gItT9knNy+o0w6P5YCM74X5oE/wlC6vzKC3r4coGQ9vvyhPitlRsDt3VA/eKTsvtqaiL8/uA4//3/+PtX/fD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACrcRU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASLmXvQAAAACWuwDAAAAAAGTphL0AAAAAohbzPwAAAACLzks9AAAAADHs7T8AAAAAw64KvQAAAACpqvy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7IttgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMxjN7wAAAAAo9T4vwAAAADiGJi9AAAAALAL8D8AAAAAwWmJPQAAAAC8q/Q/AAAAANid5D0AAAAAm5/zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACq2ozYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICi9qu9AAAAAK/XAMAAAAAAGD5dPQAAAACPAPw/AAAAABHsDT4AAAAA1534PwAAAACVI4M9AAAAADpz8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtBIm0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA56jMvQAAAACU/9i/AAAAAPB5XLoAAAAAIWr0PwAAAAAwgMm9AAAAAMfE3T8AAAAAyetMPAAAAADMlue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJEvXMW43FWMAWyUTegDjAF0lEdAqOQXBnBciXV9lChoBkdAkBA7S/j81mgHTegDaAhHQKjkee/5+H91fZQoaAZHQJO6f557gKpoB03oA2gIR0Co5Vtd7fHhdX2UKGgGR0CJBHl9Sde6aAdN6ANoCEdAqOodSKm8/XV9lChoBkdAjLKXEIgNgGgHTegDaAhHQKjwDhNucc51fZQoaAZHQIG7hJul41RoB03oA2gIR0Co8HOc2BJ7dX2UKGgGR0CKc4dpZfUnaAdN6ANoCEdAqPE8L+glGHV9lChoBkdAejV6vq1PWWgHTegDaAhHQKj2CTyrgfl1fZQoaAZHQHw4O3pfQa9oB03oA2gIR0Co/tk7GNrCdX2UKGgGR0CW76u+h4+saAdN6ANoCEdAqP9zD2rXDnV9lChoBkdAgvVE078vVWgHTegDaAhHQKkAhUEPlMh1fZQoaAZHQJTZGfg75mBoB03oA2gIR0CpBS6G5+YudX2UKGgGR0CXS4Dk2gnMaAdN6ANoCEdAqQr88ifQKXV9lChoBkdAluc/TLGJemgHTegDaAhHQKkLWZtvXK91fZQoaAZHQJcx0189fTloB03oA2gIR0CpDCdQGfPHdX2UKGgGR0CWqV4QjD8+aAdN6ANoCEdAqRC8o0ALiXV9lChoBkdAkkfJxBE8aGgHTegDaAhHQKkXjbFCLMt1fZQoaAZHQJMHCNbTtsxoB03oA2gIR0CpGBrg4wRHdX2UKGgGR0CVEMOxjawmaAdN6ANoCEdAqRlQOSW7e3V9lChoBkdAjuDGOU+s5mgHTegDaAhHQKkfkkYXO4Z1fZQoaAZHQJLUkv4/NaBoB03oA2gIR0CpJWac7QsxdX2UKGgGR0CCiw2+fywwaAdN6ANoCEdAqSXIhY/3WXV9lChoBkdAkqGH7gsK9mgHTegDaAhHQKkmji+cpb51fZQoaAZHQJBu29QGfPJoB03oA2gIR0CpKyO5J9RadX2UKGgGR0CVGXW0Z3s5aAdN6ANoCEdAqTDNyWAwwnV9lChoBkdAkCHnpbD/EWgHTegDaAhHQKkxLaXa8Hx1fZQoaAZHQJS2CZG8VYZoB03oA2gIR0CpMgo9TxXodX2UKGgGR0CShL25xzaLaAdN6ANoCEdAqTj6D5CWvHV9lChoBkdAmeL6OPvKEGgHTegDaAhHQKk/fghKUV11fZQoaAZHQJtCZPgvUSZoB03oA2gIR0CpP93xWkrPdX2UKGgGR0CYyAtjkMkQaAdN6ANoCEdAqUClc6eXiXV9lChoBkdAmMwmgam4zGgHTegDaAhHQKlFIghbGFV1fZQoaAZHQJtEwVM23rloB03oA2gIR0CpSsVObiIddX2UKGgGR0CZ4w2ZRbbDaAdN6ANoCEdAqUsnaL4ve3V9lChoBkdAmhjGGATZhGgHTegDaAhHQKlL891U2k11fZQoaAZHQJftsYixFApoB03oA2gIR0CpURSX2M86dX2UKGgGR0CX1l1QIldDaAdN6ANoCEdAqVlx5/smfHV9lChoBkdAlIqdUXHim2gHTegDaAhHQKlZ08IzFdd1fZQoaAZHQJkVp5Qgs9VoB03oA2gIR0CpWp35N47jdX2UKGgGR0CZzlS2Yv38aAdN6ANoCEdAqV9l67dzn3V9lChoBkdAmHCPZM+NcWgHTegDaAhHQKllLdWQwK11fZQoaAZHQJkTvN4Z/CtoB03oA2gIR0CpZY1k1/DtdX2UKGgGR0CchmDcuanaaAdN6ANoCEdAqWZVzjm0V3V9lChoBkdAnR/bK7qY7mgHTegDaAhHQKlq/pyp71J1fZQoaAZHQJV2ul+EytVoB03oA2gIR0CpclugQHzIdX2UKGgGR0CbmWSQYDT0aAdN6ANoCEdAqXLuKoAGS3V9lChoBkdAmM5ocR15jmgHTegDaAhHQKl0JqmCROl1fZQoaAZHQJj48FINEw5oB03oA2gIR0CpeYcstkFwdX2UKGgGR0CYTZldTo+waAdN6ANoCEdAqX8oIldC3XV9lChoBkdAnFDupOvdM2gHTegDaAhHQKl/hlCCz1N1fZQoaAZHQJpSQi9qUNdoB03oA2gIR0CpgFXT3IuHdX2UKGgGR0CcOs/yGzrvaAdN6ANoCEdAqYUUCNjslnV9lChoBkdAmfsuN96Tn2gHTegDaAhHQKmK1Av+OwR1fZQoaAZHQJo4eD7IkqtoB03oA2gIR0Cpi2FKkEcLdX2UKGgGR0CaxoSBbwBpaAdN6ANoCEdAqYyA+bExZnV9lChoBkdAmee13IMjNmgHTegDaAhHQKmTiRnvlU91fZQoaAZHQJtV+Awwj+toB03oA2gIR0CpmXhEjPfLdX2UKGgGR0CcgFgntv4uaAdN6ANoCEdAqZnVsxfv4XV9lChoBkdAmdY7xusLfGgHTegDaAhHQKmaoY1pCa91fZQoaAZHQJ0Ik88s+V1oB03oA2gIR0Cpn1W4NI9UdX2UKGgGR0CaJeg0j1PFaAdN6ANoCEdAqaT7g62fCnV9lChoBkdAnJidnCfpU2gHTegDaAhHQKmlW1SflIV1fZQoaAZHQJrlKKhtcfNoB03oA2gIR0CppiZdv864dX2UKGgGR0Cd6x1cdHUdaAdN6ANoCEdAqav7DGcWkHV9lChoBkdAm6SizTnaFmgHTegDaAhHQKmzy91U2k11fZQoaAZHQJ0Jb1RLsa9oB03oA2gIR0CptC+JHiFTdX2UKGgGR0CaV51lGwzMaAdN6ANoCEdAqbT4Hoouw3V9lChoBkdAmtQnkPtlZ2gHTegDaAhHQKm5gxdpqRF1fZQoaAZHQJtC2RB/qgRoB03oA2gIR0CpvyGaH9FXdX2UKGgGR0CcXZ4YaYNRaAdN6ANoCEdAqb+AEGJN03V9lChoBkdAnP4MbJfYz2gHTegDaAhHQKnASD7qIJt1fZQoaAZHQJp6/nEETxpoB03oA2gIR0CpxNO2iL2pdX2UKGgGR0Cbp4r6+FlDaAdN6ANoCEdAqcy1/lQuVXV9lChoBkdAm3Myq2jO9mgHTegDaAhHQKnNSaef7Jp1fZQoaAZHQJ5oOP91loVoB03oA2gIR0Cpzn23azu4dX2UKGgGR0CaYo24NI9UaAdN6ANoCEdAqdOXaakRBnV9lChoBkdAmn5Swr1/UmgHTegDaAhHQKnZNuLrHEN1fZQoaAZHQJyXGDDjzZpoB03oA2gIR0Cp2ZN/vv0AdX2UKGgGR0CcFS7b+Lm7aAdN6ANoCEdAqdpcIiTt9nV9lChoBkdAmg/xplBhQWgHTegDaAhHQKnfMD15B1N1fZQoaAZHQJzHXqJMxoJoB03oA2gIR0Cp5V3gDRtxdX2UKGgGR0Cc2WUEPlMiaAdN6ANoCEdAqeXokmhM8HV9lChoBkdAnaULaM72c2gHTegDaAhHQKnnG7tAs051fZQoaAZHQJuYhsBQvYhoB03oA2gIR0Cp7fOF6AvtdX2UKGgGR0Ce3cllsguAaAdN6ANoCEdAqfOOus90R3V9lChoBkdAnBts3ZPEbmgHTegDaAhHQKnz7DVpbll1fZQoaAZHQJnTCuRs/INoB03oA2gIR0Cp9LC97F85dX2UKGgGR0CfPWJXhfjTaAdN6ANoCEdAqflEMb3oLXV9lChoBkdAn1bqKYRdyGgHTegDaAhHQKn+7Htnf2t1fZQoaAZHQJvMyOFQEZBoB03oA2gIR0Cp/0zrmhdudX2UKGgGR0Cf0MB/qgRLaAdN6ANoCEdAqgASAMDwIHV9lChoBkdAn7PyaiKziWgHTegDaAhHQKoGWWhysCF1fZQoaAZHQJ5LbE2pAD9oB03oA2gIR0CqDb9FWn0kdX2UKGgGR0CfPQ97ngYQaAdN6ANoCEdAqg4dXYDkl3V9lChoBkdAnUMZpJwsG2gHTegDaAhHQKoO4lUIcBF1fZQoaAZHQJ265NahYeVoB03oA2gIR0CqE4aQFLWadX2UKGgGR0CfDWe4TbnHaAdN6ANoCEdAqhkktmL9/HV9lChoBkdAmgF5mEoOQWgHTegDaAhHQKoZkZhKDkF1fZQoaAZHQJr/S0G/vfFoB03oA2gIR0CqGnhgmZ3LdX2UKGgGR0CgliexOclPaAdN6ANoCEdAqh8fGjsUqXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24217131b64704aa42a34467443214c09222ce982f2b0d036f6adb155cb0e2e8
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e7ac87a11f43773d1d7fcda0ff6f1e7255574327ce4a19c9b5146ad2b0f1dbc
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32d9c0fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32d9c0fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32d9c0fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32d9c0fe50>", "_build": "<function ActorCriticPolicy._build at 0x7f32d9c0fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f32d9c0ff70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32d9c11040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32d9c110d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f32d9c11160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32d9c111f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32d9c11280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32d9c11310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f32d9c8ae80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679680660090772543, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEl25bxO03K+IlECPzUNBD6/pKY+m88jP0sIKD5IbGa97hcnPxcI27xIQeq+N7y7PXQeBr1KQpQ/j6Gyva0LBD87n4Y/EycsQBCc3LxCzwO/6sIEv+hTwT3ns1g+8hAwPtqaiL8/uA4//3/+PtX/fD/gCH1Al90WvXRXBj/+r5+/0oJ4PAhPHD67gpU+jgZCP8vx77/A6C8/bjIQwK3EpT+2Dk0/YojJPtPyJkBaINS/kKsCv9M9vb4xJiFAjQBdv1R7mD9ASDm/vBoiwB8+iD/amoi/zJjlvyLBAMCjhIG/gvWEP5aVJj/gQaw+r6m8P97qN7+0L7m+DpgRvorskr180B8/HTgTvgeXYj+drhs/8PCXv8bx3T6ZR98+BfP4v7FCu795LA+/mcutvq8yB0BruHK+2J0qPm3si7/iqY4+0N9vP8yY5b//f/4+o4SBv2murL3WSM4/fA4xvwt5iz8HpStAaoS7PkZw+L7+ZzK+dk4rPbcjMcD6q2K/8hNUP2gItT9knNy+o0w6P5YCM74X5oE/wlC6vzKC3r4coGQ9vvyhPitlRsDt3VA/eKTsvtqaiL8/uA4//3/+PtX/fD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACrcRU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASLmXvQAAAACWuwDAAAAAAGTphL0AAAAAohbzPwAAAACLzks9AAAAADHs7T8AAAAAw64KvQAAAACpqvy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7IttgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMxjN7wAAAAAo9T4vwAAAADiGJi9AAAAALAL8D8AAAAAwWmJPQAAAAC8q/Q/AAAAANid5D0AAAAAm5/zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACq2ozYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICi9qu9AAAAAK/XAMAAAAAAGD5dPQAAAACPAPw/AAAAABHsDT4AAAAA1534PwAAAACVI4M9AAAAADpz8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtBIm0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA56jMvQAAAACU/9i/AAAAAPB5XLoAAAAAIWr0PwAAAAAwgMm9AAAAAMfE3T8AAAAAyetMPAAAAADMlue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJEvXMW43FWMAWyUTegDjAF0lEdAqOQXBnBciXV9lChoBkdAkBA7S/j81mgHTegDaAhHQKjkee/5+H91fZQoaAZHQJO6f557gKpoB03oA2gIR0Co5Vtd7fHhdX2UKGgGR0CJBHl9Sde6aAdN6ANoCEdAqOodSKm8/XV9lChoBkdAjLKXEIgNgGgHTegDaAhHQKjwDhNucc51fZQoaAZHQIG7hJul41RoB03oA2gIR0Co8HOc2BJ7dX2UKGgGR0CKc4dpZfUnaAdN6ANoCEdAqPE8L+glGHV9lChoBkdAejV6vq1PWWgHTegDaAhHQKj2CTyrgfl1fZQoaAZHQHw4O3pfQa9oB03oA2gIR0Co/tk7GNrCdX2UKGgGR0CW76u+h4+saAdN6ANoCEdAqP9zD2rXDnV9lChoBkdAgvVE078vVWgHTegDaAhHQKkAhUEPlMh1fZQoaAZHQJTZGfg75mBoB03oA2gIR0CpBS6G5+YudX2UKGgGR0CXS4Dk2gnMaAdN6ANoCEdAqQr88ifQKXV9lChoBkdAluc/TLGJemgHTegDaAhHQKkLWZtvXK91fZQoaAZHQJcx0189fTloB03oA2gIR0CpDCdQGfPHdX2UKGgGR0CWqV4QjD8+aAdN6ANoCEdAqRC8o0ALiXV9lChoBkdAkkfJxBE8aGgHTegDaAhHQKkXjbFCLMt1fZQoaAZHQJMHCNbTtsxoB03oA2gIR0CpGBrg4wRHdX2UKGgGR0CVEMOxjawmaAdN6ANoCEdAqRlQOSW7e3V9lChoBkdAjuDGOU+s5mgHTegDaAhHQKkfkkYXO4Z1fZQoaAZHQJLUkv4/NaBoB03oA2gIR0CpJWac7QsxdX2UKGgGR0CCiw2+fywwaAdN6ANoCEdAqSXIhY/3WXV9lChoBkdAkqGH7gsK9mgHTegDaAhHQKkmji+cpb51fZQoaAZHQJBu29QGfPJoB03oA2gIR0CpKyO5J9RadX2UKGgGR0CVGXW0Z3s5aAdN6ANoCEdAqTDNyWAwwnV9lChoBkdAkCHnpbD/EWgHTegDaAhHQKkxLaXa8Hx1fZQoaAZHQJS2CZG8VYZoB03oA2gIR0CpMgo9TxXodX2UKGgGR0CShL25xzaLaAdN6ANoCEdAqTj6D5CWvHV9lChoBkdAmeL6OPvKEGgHTegDaAhHQKk/fghKUV11fZQoaAZHQJtCZPgvUSZoB03oA2gIR0CpP93xWkrPdX2UKGgGR0CYyAtjkMkQaAdN6ANoCEdAqUClc6eXiXV9lChoBkdAmMwmgam4zGgHTegDaAhHQKlFIghbGFV1fZQoaAZHQJtEwVM23rloB03oA2gIR0CpSsVObiIddX2UKGgGR0CZ4w2ZRbbDaAdN6ANoCEdAqUsnaL4ve3V9lChoBkdAmhjGGATZhGgHTegDaAhHQKlL891U2k11fZQoaAZHQJftsYixFApoB03oA2gIR0CpURSX2M86dX2UKGgGR0CX1l1QIldDaAdN6ANoCEdAqVlx5/smfHV9lChoBkdAlIqdUXHim2gHTegDaAhHQKlZ08IzFdd1fZQoaAZHQJkVp5Qgs9VoB03oA2gIR0CpWp35N47jdX2UKGgGR0CZzlS2Yv38aAdN6ANoCEdAqV9l67dzn3V9lChoBkdAmHCPZM+NcWgHTegDaAhHQKllLdWQwK11fZQoaAZHQJkTvN4Z/CtoB03oA2gIR0CpZY1k1/DtdX2UKGgGR0CchmDcuanaaAdN6ANoCEdAqWZVzjm0V3V9lChoBkdAnR/bK7qY7mgHTegDaAhHQKlq/pyp71J1fZQoaAZHQJV2ul+EytVoB03oA2gIR0CpclugQHzIdX2UKGgGR0CbmWSQYDT0aAdN6ANoCEdAqXLuKoAGS3V9lChoBkdAmM5ocR15jmgHTegDaAhHQKl0JqmCROl1fZQoaAZHQJj48FINEw5oB03oA2gIR0CpeYcstkFwdX2UKGgGR0CYTZldTo+waAdN6ANoCEdAqX8oIldC3XV9lChoBkdAnFDupOvdM2gHTegDaAhHQKl/hlCCz1N1fZQoaAZHQJpSQi9qUNdoB03oA2gIR0CpgFXT3IuHdX2UKGgGR0CcOs/yGzrvaAdN6ANoCEdAqYUUCNjslnV9lChoBkdAmfsuN96Tn2gHTegDaAhHQKmK1Av+OwR1fZQoaAZHQJo4eD7IkqtoB03oA2gIR0Cpi2FKkEcLdX2UKGgGR0CaxoSBbwBpaAdN6ANoCEdAqYyA+bExZnV9lChoBkdAmee13IMjNmgHTegDaAhHQKmTiRnvlU91fZQoaAZHQJtV+Awwj+toB03oA2gIR0CpmXhEjPfLdX2UKGgGR0CcgFgntv4uaAdN6ANoCEdAqZnVsxfv4XV9lChoBkdAmdY7xusLfGgHTegDaAhHQKmaoY1pCa91fZQoaAZHQJ0Ik88s+V1oB03oA2gIR0Cpn1W4NI9UdX2UKGgGR0CaJeg0j1PFaAdN6ANoCEdAqaT7g62fCnV9lChoBkdAnJidnCfpU2gHTegDaAhHQKmlW1SflIV1fZQoaAZHQJrlKKhtcfNoB03oA2gIR0CppiZdv864dX2UKGgGR0Cd6x1cdHUdaAdN6ANoCEdAqav7DGcWkHV9lChoBkdAm6SizTnaFmgHTegDaAhHQKmzy91U2k11fZQoaAZHQJ0Jb1RLsa9oB03oA2gIR0CptC+JHiFTdX2UKGgGR0CaV51lGwzMaAdN6ANoCEdAqbT4Hoouw3V9lChoBkdAmtQnkPtlZ2gHTegDaAhHQKm5gxdpqRF1fZQoaAZHQJtC2RB/qgRoB03oA2gIR0CpvyGaH9FXdX2UKGgGR0CcXZ4YaYNRaAdN6ANoCEdAqb+AEGJN03V9lChoBkdAnP4MbJfYz2gHTegDaAhHQKnASD7qIJt1fZQoaAZHQJp6/nEETxpoB03oA2gIR0CpxNO2iL2pdX2UKGgGR0Cbp4r6+FlDaAdN6ANoCEdAqcy1/lQuVXV9lChoBkdAm3Myq2jO9mgHTegDaAhHQKnNSaef7Jp1fZQoaAZHQJ5oOP91loVoB03oA2gIR0Cpzn23azu4dX2UKGgGR0CaYo24NI9UaAdN6ANoCEdAqdOXaakRBnV9lChoBkdAmn5Swr1/UmgHTegDaAhHQKnZNuLrHEN1fZQoaAZHQJyXGDDjzZpoB03oA2gIR0Cp2ZN/vv0AdX2UKGgGR0CcFS7b+Lm7aAdN6ANoCEdAqdpcIiTt9nV9lChoBkdAmg/xplBhQWgHTegDaAhHQKnfMD15B1N1fZQoaAZHQJzHXqJMxoJoB03oA2gIR0Cp5V3gDRtxdX2UKGgGR0Cc2WUEPlMiaAdN6ANoCEdAqeXokmhM8HV9lChoBkdAnaULaM72c2gHTegDaAhHQKnnG7tAs051fZQoaAZHQJuYhsBQvYhoB03oA2gIR0Cp7fOF6AvtdX2UKGgGR0Ce3cllsguAaAdN6ANoCEdAqfOOus90R3V9lChoBkdAnBts3ZPEbmgHTegDaAhHQKnz7DVpbll1fZQoaAZHQJnTCuRs/INoB03oA2gIR0Cp9LC97F85dX2UKGgGR0CfPWJXhfjTaAdN6ANoCEdAqflEMb3oLXV9lChoBkdAn1bqKYRdyGgHTegDaAhHQKn+7Htnf2t1fZQoaAZHQJvMyOFQEZBoB03oA2gIR0Cp/0zrmhdudX2UKGgGR0Cf0MB/qgRLaAdN6ANoCEdAqgASAMDwIHV9lChoBkdAn7PyaiKziWgHTegDaAhHQKoGWWhysCF1fZQoaAZHQJ5LbE2pAD9oB03oA2gIR0CqDb9FWn0kdX2UKGgGR0CfPQ97ngYQaAdN6ANoCEdAqg4dXYDkl3V9lChoBkdAnUMZpJwsG2gHTegDaAhHQKoO4lUIcBF1fZQoaAZHQJ265NahYeVoB03oA2gIR0CqE4aQFLWadX2UKGgGR0CfDWe4TbnHaAdN6ANoCEdAqhkktmL9/HV9lChoBkdAmgF5mEoOQWgHTegDaAhHQKoZkZhKDkF1fZQoaAZHQJr/S0G/vfFoB03oA2gIR0CqGnhgmZ3LdX2UKGgGR0CgliexOclPaAdN6ANoCEdAqh8fGjsUqXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:645a57139cb002562b48797e7dc3cba62d1e7b86c6ca4652b94db4ab6ea9e93d
3
+ size 1097884
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1976.7260570834799, "std_reward": 115.88859199297008, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T19:00:50.764210"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af8767c723b39b46a2737e40b9b525b9ce30f2880df030fde61182732714373b
3
+ size 2136