Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.71 +/- 0.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b82fdf46ab424777fed70e6b343363355bdc9f46824de60ec6382478f38480b
|
3 |
+
size 108100
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f32d9c11430>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f32d9c12080>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1679684579554651197,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4WDkPivPwjzrUgo/4WDkPivPwjzrUgo/4WDkPivPwjzrUgo/4WDkPivPwjzrUgo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiSwrvzHKE7/+0yM+tuHdv8O/aT/8c8Q/s8/Pv8xCGb71oAC/P+8Gvz90zj4BwT89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADhYOQ+K8/CPOtSCj8vNXO6etGoOVnOirvhYOQ+K8/CPOtSCj8vNXO6etGoOVnOirvhYOQ+K8/CPOtSCj8vNXO6etGoOVnOirvhYOQ+K8/CPOtSCj8vNXO6etGoOVnOiruUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.44605163 0.02378043 0.5403277 ]\n [0.44605163 0.02378043 0.5403277 ]\n [0.44605163 0.02378043 0.5403277 ]\n [0.44605163 0.02378043 0.5403277 ]]",
|
60 |
+
"desired_goal": "[[-0.6686483 -0.57730395 0.15998837]\n [-1.7334507 0.9130823 1.5347896 ]\n [-1.623526 -0.14966887 -0.502456 ]\n [-0.5270881 0.40323064 0.04681492]]",
|
61 |
+
"observation": "[[ 4.4605163e-01 2.3780426e-02 5.4032773e-01 -9.2776393e-04\n 3.2199529e-04 -4.2360243e-03]\n [ 4.4605163e-01 2.3780426e-02 5.4032773e-01 -9.2776393e-04\n 3.2199529e-04 -4.2360243e-03]\n [ 4.4605163e-01 2.3780426e-02 5.4032773e-01 -9.2776393e-04\n 3.2199529e-04 -4.2360243e-03]\n [ 4.4605163e-01 2.3780426e-02 5.4032773e-01 -9.2776393e-04\n 3.2199529e-04 -4.2360243e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz6sfPTRn1D36c8I7CAf2u5rQZT31yQM+GNz2vNK7CD7DN4w+HI0VvowoEb75jqQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.03898221 0.10371247 0.00593424]\n [-0.00750816 0.05610714 0.12870009]\n [-0.03013425 0.13352898 0.27386293]\n [-0.1460461 -0.14175624 0.08035082]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZHeBkgLL9L+UhpRSlIwBbJRLMowBdJRHQKaC0A5Jbt91fZQoaAZoCWgPQwjiHksfuqDrv5SGlFKUaBVLMmgWR0CmgpJo0ygxdX2UKGgGaAloD0MIUtSZe0j46r+UhpRSlGgVSzJoFkdApoJSfWcz7HV9lChoBmgJaA9DCHU90XXhB/O/lIaUUpRoFUsyaBZHQKaCFjhDPWx1fZQoaAZoCWgPQwiF0axsHzL0v5SGlFKUaBVLMmgWR0Cmg9t0/4ZddX2UKGgGaAloD0MIVKcDWU+t4L+UhpRSlGgVSzJoFkdApoOd4Pf8/HV9lChoBmgJaA9DCNkiaTf6mN6/lIaUUpRoFUsyaBZHQKaDXfzBhx51fZQoaAZoCWgPQwjs3R/vVSvlv5SGlFKUaBVLMmgWR0CmgyHLq2SddX2UKGgGaAloD0MIVaGBWDaz8b+UhpRSlGgVSzJoFkdApoTm5hBqsXV9lChoBmgJaA9DCOzctBmnYfG/lIaUUpRoFUsyaBZHQKaEqUlAu7J1fZQoaAZoCWgPQwhsdqT6zi/pv5SGlFKUaBVLMmgWR0CmhGlZgXuWdX2UKGgGaAloD0MIafzCK0ke5r+UhpRSlGgVSzJoFkdApoQtEiMYM3V9lChoBmgJaA9DCPUOt0PDYt+/lIaUUpRoFUsyaBZHQKaF7ZntfHB1fZQoaAZoCWgPQwjY17rUCH3sv5SGlFKUaBVLMmgWR0Cmha/6GgzydX2UKGgGaAloD0MIPdLgtrZw7L+UhpRSlGgVSzJoFkdApoVv/Pw/gXV9lChoBmgJaA9DCHU6kPXUauC/lIaUUpRoFUsyaBZHQKaFM8HObAl1fZQoaAZoCWgPQwjPvBx23zHqv5SGlFKUaBVLMmgWR0CmhyEtdzGQdX2UKGgGaAloD0MI+3lTkQrj7b+UhpRSlGgVSzJoFkdApobjnDBMz3V9lChoBmgJaA9DCAniPJzAdNy/lIaUUpRoFUsyaBZHQKaGo6J66at1fZQoaAZoCWgPQwhFnbmHhG/tv5SGlFKUaBVLMmgWR0CmhmdNet0WdX2UKGgGaAloD0MIGf8+48KB6r+UhpRSlGgVSzJoFkdApogxb2USqXV9lChoBmgJaA9DCOeoo+Nq5OS/lIaUUpRoFUsyaBZHQKaH8+36Q/51fZQoaAZoCWgPQwgCKbFrezvjv5SGlFKUaBVLMmgWR0Cmh7PexfOVdX2UKGgGaAloD0MIRuuoaoKo17+UhpRSlGgVSzJoFkdApod3qJMxoXV9lChoBmgJaA9DCPT91HjpJtu/lIaUUpRoFUsyaBZHQKaJO/UONHZ1fZQoaAZoCWgPQwjhCFIpdrTlv5SGlFKUaBVLMmgWR0CmiP5bQkX2dX2UKGgGaAloD0MIFoTyPo5m57+UhpRSlGgVSzJoFkdApoi+e6I3znV9lChoBmgJaA9DCOTXD7HBAvS/lIaUUpRoFUsyaBZHQKaIgnAqNId1fZQoaAZoCWgPQwjnxvSEJR7cv5SGlFKUaBVLMmgWR0CmikhWYF7ldX2UKGgGaAloD0MIdFyN7EpL/7+UhpRSlGgVSzJoFkdApooKsuFpPHV9lChoBmgJaA9DCBOe0OtP4te/lIaUUpRoFUsyaBZHQKaJytCiRGN1fZQoaAZoCWgPQwgLCRhd3pzwv5SGlFKUaBVLMmgWR0CmiY7ILgGbdX2UKGgGaAloD0MIa0dxjjq65r+UhpRSlGgVSzJoFkdApotYVKwpv3V9lChoBmgJaA9DCIsyG2SSEeW/lIaUUpRoFUsyaBZHQKaLG4p+c6N1fZQoaAZoCWgPQwio/kEkQ070v5SGlFKUaBVLMmgWR0Cmitxh2GIsdX2UKGgGaAloD0MIoYLDCyJS5r+UhpRSlGgVSzJoFkdApoqg8Md92HV9lChoBmgJaA9DCICAtWrXRPK/lIaUUpRoFUsyaBZHQKaMY3WFvht1fZQoaAZoCWgPQwhtA3egTvnwv5SGlFKUaBVLMmgWR0CmjCXqzJIUdX2UKGgGaAloD0MILnHkgcgi7r+UhpRSlGgVSzJoFkdApovl8E3bVXV9lChoBmgJaA9DCFdgyOpWD/C/lIaUUpRoFUsyaBZHQKaLqZGax5d1fZQoaAZoCWgPQwjvHTUmxFzgv5SGlFKUaBVLMmgWR0CmjXeLFXJYdX2UKGgGaAloD0MIM/59xoUD2r+UhpRSlGgVSzJoFkdApo05/ZuhsnV9lChoBmgJaA9DCDNTWn9LAOu/lIaUUpRoFUsyaBZHQKaM+hNdqtZ1fZQoaAZoCWgPQwgtB3qobUPhv5SGlFKUaBVLMmgWR0CmjL3hn8KpdX2UKGgGaAloD0MIO+C6Ykb47L+UhpRSlGgVSzJoFkdApo59V3ljmXV9lChoBmgJaA9DCJkoQup29ty/lIaUUpRoFUsyaBZHQKaOP8yeqaR1fZQoaAZoCWgPQwjEmV/NAQL5v5SGlFKUaBVLMmgWR0Cmjf/I8yN5dX2UKGgGaAloD0MI2UP7WMFv3b+UhpRSlGgVSzJoFkdApo3Df3vhInV9lChoBmgJaA9DCN0HILWJk/C/lIaUUpRoFUsyaBZHQKaPqZwXIlt1fZQoaAZoCWgPQwjFyJI5lvfvv5SGlFKUaBVLMmgWR0Cmj2wZwXImdX2UKGgGaAloD0MInRA66BKO9L+UhpRSlGgVSzJoFkdApo8sLncL0HV9lChoBmgJaA9DCBL3WPrQhea/lIaUUpRoFUsyaBZHQKaO7+QU5+91fZQoaAZoCWgPQwj5SbVPx2Pnv5SGlFKUaBVLMmgWR0CmkLW38XN1dX2UKGgGaAloD0MIzNHj9zZ97b+UhpRSlGgVSzJoFkdAppB4R7JGOXV9lChoBmgJaA9DCJjfaTLjbfC/lIaUUpRoFUsyaBZHQKaQOEug6EJ1fZQoaAZoCWgPQwgm/FI/b+rwv5SGlFKUaBVLMmgWR0Cmj/wCKaXsdX2UKGgGaAloD0MI3A94YABh5b+UhpRSlGgVSzJoFkdAppIcHMUypXV9lChoBmgJaA9DCGqlEMgljvO/lIaUUpRoFUsyaBZHQKaR305EMLF1fZQoaAZoCWgPQwhNTYI3pBHzv5SGlFKUaBVLMmgWR0CmkaA6uGKydX2UKGgGaAloD0MI8FAU6BN54b+UhpRSlGgVSzJoFkdAppFk2Jiy6nV9lChoBmgJaA9DCFYL7DGRUvG/lIaUUpRoFUsyaBZHQKaT3lijL0V1fZQoaAZoCWgPQwixicxc4PLjv5SGlFKUaBVLMmgWR0Cmk6GsV+I/dX2UKGgGaAloD0MIhPBo44i16b+UhpRSlGgVSzJoFkdAppNiaw2VFHV9lChoBmgJaA9DCNVbA1slWOC/lIaUUpRoFUsyaBZHQKaTJ1loUSJ1fZQoaAZoCWgPQwglkBK7tjfrv5SGlFKUaBVLMmgWR0CmlZTasZHedX2UKGgGaAloD0MIJSL8i6Cx77+UhpRSlGgVSzJoFkdAppVYHiWE9XV9lChoBmgJaA9DCGx2pPrOr+W/lIaUUpRoFUsyaBZHQKaVGO0b9611fZQoaAZoCWgPQwjHvI44ZAPqv5SGlFKUaBVLMmgWR0CmlN7wazeGdX2UKGgGaAloD0MISRRa1v1j3L+UhpRSlGgVSzJoFkdAppeXx+az/3V9lChoBmgJaA9DCBQ/xty1hO2/lIaUUpRoFUsyaBZHQKaXXHdXT3J1fZQoaAZoCWgPQwjqy9JOzeXnv5SGlFKUaBVLMmgWR0Cmlx2oNutPdX2UKGgGaAloD0MIAihGlsyx37+UhpRSlGgVSzJoFkdAppbiVv/BFnV9lChoBmgJaA9DCMWScvc5PtG/lIaUUpRoFUsyaBZHQKaZXe6Zpi91fZQoaAZoCWgPQwhJn1bRHxrqv5SGlFKUaBVLMmgWR0CmmSE7GNrCdX2UKGgGaAloD0MIO4xJfy+F6L+UhpRSlGgVSzJoFkdAppjiDqW1MXV9lChoBmgJaA9DCC4bnfNTHO+/lIaUUpRoFUsyaBZHQKaYpmbsniN1fZQoaAZoCWgPQwiPUZ55OWzjv5SGlFKUaBVLMmgWR0CmmvmTkhicdX2UKGgGaAloD0MIbtqM0xDV4b+UhpRSlGgVSzJoFkdAppq8BKcurnV9lChoBmgJaA9DCDOJesGnuee/lIaUUpRoFUsyaBZHQKaafCk43m51fZQoaAZoCWgPQwimQjwSL0/tv5SGlFKUaBVLMmgWR0Cmmj/x2B8QdX2UKGgGaAloD0MIcJS8OscA6b+UhpRSlGgVSzJoFkdAppwpLqUu+XV9lChoBmgJaA9DCJPkub4PB+C/lIaUUpRoFUsyaBZHQKab68Rtgrp1fZQoaAZoCWgPQwgei21S0Vjgv5SGlFKUaBVLMmgWR0Cmm6wAEMb4dX2UKGgGaAloD0MIyAiocASp77+UhpRSlGgVSzJoFkdApptv557gKnV9lChoBmgJaA9DCGn/A6xVO+2/lIaUUpRoFUsyaBZHQKadZ9oexOd1fZQoaAZoCWgPQwhOs0C7Qwruv5SGlFKUaBVLMmgWR0CmnSpMHryEdX2UKGgGaAloD0MIdjI4Sl6d7r+UhpRSlGgVSzJoFkdAppzqZ2IO6XV9lChoBmgJaA9DCP/KSpNSUOu/lIaUUpRoFUsyaBZHQKacrjENvwV1fZQoaAZoCWgPQwhENLqD2Bnvv5SGlFKUaBVLMmgWR0CmnnuT7l7udX2UKGgGaAloD0MItcNfkzVq4b+UhpRSlGgVSzJoFkdApp49/Ue+23V9lChoBmgJaA9DCFjFG5lHfuO/lIaUUpRoFUsyaBZHQKad/hScbzd1fZQoaAZoCWgPQwhZ3H9kOvTkv5SGlFKUaBVLMmgWR0CmncHPu5SWdX2UKGgGaAloD0MIMlhxqrWw4b+UhpRSlGgVSzJoFkdApp+JkVeruXV9lChoBmgJaA9DCKexvRb0Xui/lIaUUpRoFUsyaBZHQKafS/UvwmV1fZQoaAZoCWgPQwg6WWq932jhv5SGlFKUaBVLMmgWR0CmnwwPy08edX2UKGgGaAloD0MIJZLoZRTL6r+UhpRSlGgVSzJoFkdApp7Pxe9i+nV9lChoBmgJaA9DCGzrp/+s+ei/lIaUUpRoFUsyaBZHQKagmMiKR+11fZQoaAZoCWgPQwgFbXL4pJPmv5SGlFKUaBVLMmgWR0CmoFs54nnddX2UKGgGaAloD0MIhetRuB4F6b+UhpRSlGgVSzJoFkdApqAbRD1GsnV9lChoBmgJaA9DCDPFHAQdLey/lIaUUpRoFUsyaBZHQKaf3xjJ+2F1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e80dd9037102a1d6fa60bca034ca8c77345111aba40cbc6f1f504dc7e9fd33b6
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29012e597859219e3300f54afbed1f0a77eb8c4c062d58b1b52433d8d860b030
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f32d9c11430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f32d9c12080>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679684579554651197, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4WDkPivPwjzrUgo/4WDkPivPwjzrUgo/4WDkPivPwjzrUgo/4WDkPivPwjzrUgo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiSwrvzHKE7/+0yM+tuHdv8O/aT/8c8Q/s8/Pv8xCGb71oAC/P+8Gvz90zj4BwT89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADhYOQ+K8/CPOtSCj8vNXO6etGoOVnOirvhYOQ+K8/CPOtSCj8vNXO6etGoOVnOirvhYOQ+K8/CPOtSCj8vNXO6etGoOVnOirvhYOQ+K8/CPOtSCj8vNXO6etGoOVnOiruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.44605163 0.02378043 0.5403277 ]\n [0.44605163 0.02378043 0.5403277 ]\n [0.44605163 0.02378043 0.5403277 ]\n [0.44605163 0.02378043 0.5403277 ]]", "desired_goal": "[[-0.6686483 -0.57730395 0.15998837]\n [-1.7334507 0.9130823 1.5347896 ]\n [-1.623526 -0.14966887 -0.502456 ]\n [-0.5270881 0.40323064 0.04681492]]", "observation": "[[ 4.4605163e-01 2.3780426e-02 5.4032773e-01 -9.2776393e-04\n 3.2199529e-04 -4.2360243e-03]\n [ 4.4605163e-01 2.3780426e-02 5.4032773e-01 -9.2776393e-04\n 3.2199529e-04 -4.2360243e-03]\n [ 4.4605163e-01 2.3780426e-02 5.4032773e-01 -9.2776393e-04\n 3.2199529e-04 -4.2360243e-03]\n [ 4.4605163e-01 2.3780426e-02 5.4032773e-01 -9.2776393e-04\n 3.2199529e-04 -4.2360243e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz6sfPTRn1D36c8I7CAf2u5rQZT31yQM+GNz2vNK7CD7DN4w+HI0VvowoEb75jqQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03898221 0.10371247 0.00593424]\n [-0.00750816 0.05610714 0.12870009]\n [-0.03013425 0.13352898 0.27386293]\n [-0.1460461 -0.14175624 0.08035082]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZHeBkgLL9L+UhpRSlIwBbJRLMowBdJRHQKaC0A5Jbt91fZQoaAZoCWgPQwjiHksfuqDrv5SGlFKUaBVLMmgWR0CmgpJo0ygxdX2UKGgGaAloD0MIUtSZe0j46r+UhpRSlGgVSzJoFkdApoJSfWcz7HV9lChoBmgJaA9DCHU90XXhB/O/lIaUUpRoFUsyaBZHQKaCFjhDPWx1fZQoaAZoCWgPQwiF0axsHzL0v5SGlFKUaBVLMmgWR0Cmg9t0/4ZddX2UKGgGaAloD0MIVKcDWU+t4L+UhpRSlGgVSzJoFkdApoOd4Pf8/HV9lChoBmgJaA9DCNkiaTf6mN6/lIaUUpRoFUsyaBZHQKaDXfzBhx51fZQoaAZoCWgPQwjs3R/vVSvlv5SGlFKUaBVLMmgWR0CmgyHLq2SddX2UKGgGaAloD0MIVaGBWDaz8b+UhpRSlGgVSzJoFkdApoTm5hBqsXV9lChoBmgJaA9DCOzctBmnYfG/lIaUUpRoFUsyaBZHQKaEqUlAu7J1fZQoaAZoCWgPQwhsdqT6zi/pv5SGlFKUaBVLMmgWR0CmhGlZgXuWdX2UKGgGaAloD0MIafzCK0ke5r+UhpRSlGgVSzJoFkdApoQtEiMYM3V9lChoBmgJaA9DCPUOt0PDYt+/lIaUUpRoFUsyaBZHQKaF7ZntfHB1fZQoaAZoCWgPQwjY17rUCH3sv5SGlFKUaBVLMmgWR0Cmha/6GgzydX2UKGgGaAloD0MIPdLgtrZw7L+UhpRSlGgVSzJoFkdApoVv/Pw/gXV9lChoBmgJaA9DCHU6kPXUauC/lIaUUpRoFUsyaBZHQKaFM8HObAl1fZQoaAZoCWgPQwjPvBx23zHqv5SGlFKUaBVLMmgWR0CmhyEtdzGQdX2UKGgGaAloD0MI+3lTkQrj7b+UhpRSlGgVSzJoFkdApobjnDBMz3V9lChoBmgJaA9DCAniPJzAdNy/lIaUUpRoFUsyaBZHQKaGo6J66at1fZQoaAZoCWgPQwhFnbmHhG/tv5SGlFKUaBVLMmgWR0CmhmdNet0WdX2UKGgGaAloD0MIGf8+48KB6r+UhpRSlGgVSzJoFkdApogxb2USqXV9lChoBmgJaA9DCOeoo+Nq5OS/lIaUUpRoFUsyaBZHQKaH8+36Q/51fZQoaAZoCWgPQwgCKbFrezvjv5SGlFKUaBVLMmgWR0Cmh7PexfOVdX2UKGgGaAloD0MIRuuoaoKo17+UhpRSlGgVSzJoFkdApod3qJMxoXV9lChoBmgJaA9DCPT91HjpJtu/lIaUUpRoFUsyaBZHQKaJO/UONHZ1fZQoaAZoCWgPQwjhCFIpdrTlv5SGlFKUaBVLMmgWR0CmiP5bQkX2dX2UKGgGaAloD0MIFoTyPo5m57+UhpRSlGgVSzJoFkdApoi+e6I3znV9lChoBmgJaA9DCOTXD7HBAvS/lIaUUpRoFUsyaBZHQKaIgnAqNId1fZQoaAZoCWgPQwjnxvSEJR7cv5SGlFKUaBVLMmgWR0CmikhWYF7ldX2UKGgGaAloD0MIdFyN7EpL/7+UhpRSlGgVSzJoFkdApooKsuFpPHV9lChoBmgJaA9DCBOe0OtP4te/lIaUUpRoFUsyaBZHQKaJytCiRGN1fZQoaAZoCWgPQwgLCRhd3pzwv5SGlFKUaBVLMmgWR0CmiY7ILgGbdX2UKGgGaAloD0MIa0dxjjq65r+UhpRSlGgVSzJoFkdApotYVKwpv3V9lChoBmgJaA9DCIsyG2SSEeW/lIaUUpRoFUsyaBZHQKaLG4p+c6N1fZQoaAZoCWgPQwio/kEkQ070v5SGlFKUaBVLMmgWR0Cmitxh2GIsdX2UKGgGaAloD0MIoYLDCyJS5r+UhpRSlGgVSzJoFkdApoqg8Md92HV9lChoBmgJaA9DCICAtWrXRPK/lIaUUpRoFUsyaBZHQKaMY3WFvht1fZQoaAZoCWgPQwhtA3egTvnwv5SGlFKUaBVLMmgWR0CmjCXqzJIUdX2UKGgGaAloD0MILnHkgcgi7r+UhpRSlGgVSzJoFkdApovl8E3bVXV9lChoBmgJaA9DCFdgyOpWD/C/lIaUUpRoFUsyaBZHQKaLqZGax5d1fZQoaAZoCWgPQwjvHTUmxFzgv5SGlFKUaBVLMmgWR0CmjXeLFXJYdX2UKGgGaAloD0MIM/59xoUD2r+UhpRSlGgVSzJoFkdApo05/ZuhsnV9lChoBmgJaA9DCDNTWn9LAOu/lIaUUpRoFUsyaBZHQKaM+hNdqtZ1fZQoaAZoCWgPQwgtB3qobUPhv5SGlFKUaBVLMmgWR0CmjL3hn8KpdX2UKGgGaAloD0MIO+C6Ykb47L+UhpRSlGgVSzJoFkdApo59V3ljmXV9lChoBmgJaA9DCJkoQup29ty/lIaUUpRoFUsyaBZHQKaOP8yeqaR1fZQoaAZoCWgPQwjEmV/NAQL5v5SGlFKUaBVLMmgWR0Cmjf/I8yN5dX2UKGgGaAloD0MI2UP7WMFv3b+UhpRSlGgVSzJoFkdApo3Df3vhInV9lChoBmgJaA9DCN0HILWJk/C/lIaUUpRoFUsyaBZHQKaPqZwXIlt1fZQoaAZoCWgPQwjFyJI5lvfvv5SGlFKUaBVLMmgWR0Cmj2wZwXImdX2UKGgGaAloD0MInRA66BKO9L+UhpRSlGgVSzJoFkdApo8sLncL0HV9lChoBmgJaA9DCBL3WPrQhea/lIaUUpRoFUsyaBZHQKaO7+QU5+91fZQoaAZoCWgPQwj5SbVPx2Pnv5SGlFKUaBVLMmgWR0CmkLW38XN1dX2UKGgGaAloD0MIzNHj9zZ97b+UhpRSlGgVSzJoFkdAppB4R7JGOXV9lChoBmgJaA9DCJjfaTLjbfC/lIaUUpRoFUsyaBZHQKaQOEug6EJ1fZQoaAZoCWgPQwgm/FI/b+rwv5SGlFKUaBVLMmgWR0Cmj/wCKaXsdX2UKGgGaAloD0MI3A94YABh5b+UhpRSlGgVSzJoFkdAppIcHMUypXV9lChoBmgJaA9DCGqlEMgljvO/lIaUUpRoFUsyaBZHQKaR305EMLF1fZQoaAZoCWgPQwhNTYI3pBHzv5SGlFKUaBVLMmgWR0CmkaA6uGKydX2UKGgGaAloD0MI8FAU6BN54b+UhpRSlGgVSzJoFkdAppFk2Jiy6nV9lChoBmgJaA9DCFYL7DGRUvG/lIaUUpRoFUsyaBZHQKaT3lijL0V1fZQoaAZoCWgPQwixicxc4PLjv5SGlFKUaBVLMmgWR0Cmk6GsV+I/dX2UKGgGaAloD0MIhPBo44i16b+UhpRSlGgVSzJoFkdAppNiaw2VFHV9lChoBmgJaA9DCNVbA1slWOC/lIaUUpRoFUsyaBZHQKaTJ1loUSJ1fZQoaAZoCWgPQwglkBK7tjfrv5SGlFKUaBVLMmgWR0CmlZTasZHedX2UKGgGaAloD0MIJSL8i6Cx77+UhpRSlGgVSzJoFkdAppVYHiWE9XV9lChoBmgJaA9DCGx2pPrOr+W/lIaUUpRoFUsyaBZHQKaVGO0b9611fZQoaAZoCWgPQwjHvI44ZAPqv5SGlFKUaBVLMmgWR0CmlN7wazeGdX2UKGgGaAloD0MISRRa1v1j3L+UhpRSlGgVSzJoFkdAppeXx+az/3V9lChoBmgJaA9DCBQ/xty1hO2/lIaUUpRoFUsyaBZHQKaXXHdXT3J1fZQoaAZoCWgPQwjqy9JOzeXnv5SGlFKUaBVLMmgWR0Cmlx2oNutPdX2UKGgGaAloD0MIAihGlsyx37+UhpRSlGgVSzJoFkdAppbiVv/BFnV9lChoBmgJaA9DCMWScvc5PtG/lIaUUpRoFUsyaBZHQKaZXe6Zpi91fZQoaAZoCWgPQwhJn1bRHxrqv5SGlFKUaBVLMmgWR0CmmSE7GNrCdX2UKGgGaAloD0MIO4xJfy+F6L+UhpRSlGgVSzJoFkdAppjiDqW1MXV9lChoBmgJaA9DCC4bnfNTHO+/lIaUUpRoFUsyaBZHQKaYpmbsniN1fZQoaAZoCWgPQwiPUZ55OWzjv5SGlFKUaBVLMmgWR0CmmvmTkhicdX2UKGgGaAloD0MIbtqM0xDV4b+UhpRSlGgVSzJoFkdAppq8BKcurnV9lChoBmgJaA9DCDOJesGnuee/lIaUUpRoFUsyaBZHQKaafCk43m51fZQoaAZoCWgPQwimQjwSL0/tv5SGlFKUaBVLMmgWR0Cmmj/x2B8QdX2UKGgGaAloD0MIcJS8OscA6b+UhpRSlGgVSzJoFkdAppwpLqUu+XV9lChoBmgJaA9DCJPkub4PB+C/lIaUUpRoFUsyaBZHQKab68Rtgrp1fZQoaAZoCWgPQwgei21S0Vjgv5SGlFKUaBVLMmgWR0Cmm6wAEMb4dX2UKGgGaAloD0MIyAiocASp77+UhpRSlGgVSzJoFkdApptv557gKnV9lChoBmgJaA9DCGn/A6xVO+2/lIaUUpRoFUsyaBZHQKadZ9oexOd1fZQoaAZoCWgPQwhOs0C7Qwruv5SGlFKUaBVLMmgWR0CmnSpMHryEdX2UKGgGaAloD0MIdjI4Sl6d7r+UhpRSlGgVSzJoFkdAppzqZ2IO6XV9lChoBmgJaA9DCP/KSpNSUOu/lIaUUpRoFUsyaBZHQKacrjENvwV1fZQoaAZoCWgPQwhENLqD2Bnvv5SGlFKUaBVLMmgWR0CmnnuT7l7udX2UKGgGaAloD0MItcNfkzVq4b+UhpRSlGgVSzJoFkdApp49/Ue+23V9lChoBmgJaA9DCFjFG5lHfuO/lIaUUpRoFUsyaBZHQKad/hScbzd1fZQoaAZoCWgPQwhZ3H9kOvTkv5SGlFKUaBVLMmgWR0CmncHPu5SWdX2UKGgGaAloD0MIMlhxqrWw4b+UhpRSlGgVSzJoFkdApp+JkVeruXV9lChoBmgJaA9DCKexvRb0Xui/lIaUUpRoFUsyaBZHQKafS/UvwmV1fZQoaAZoCWgPQwg6WWq932jhv5SGlFKUaBVLMmgWR0CmnwwPy08edX2UKGgGaAloD0MIJZLoZRTL6r+UhpRSlGgVSzJoFkdApp7Pxe9i+nV9lChoBmgJaA9DCGzrp/+s+ei/lIaUUpRoFUsyaBZHQKagmMiKR+11fZQoaAZoCWgPQwgFbXL4pJPmv5SGlFKUaBVLMmgWR0CmoFs54nnddX2UKGgGaAloD0MIhetRuB4F6b+UhpRSlGgVSzJoFkdApqAbRD1GsnV9lChoBmgJaA9DCDPFHAQdLey/lIaUUpRoFUsyaBZHQKaf3xjJ+2F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (391 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.7083482409827411, "std_reward": 0.27232770990531546, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T19:52:19.064935"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdcfc925507c8127998945c365f055b566a32cef018056ae54e5d7816617f817
|
3 |
+
size 3056
|