Quoc Bao Bui commited on
Commit
b1e2b1f
·
1 Parent(s): 80ac413

Optimize handler, update README

Browse files
Files changed (2) hide show
  1. README.md +26 -43
  2. handler.py +10 -14
README.md CHANGED
@@ -4,47 +4,30 @@ tags:
4
  - stable-diffusion
5
  - stable-diffusion-diffusers
6
  - endpoints-template
7
- duplicated_from: philschmid/stable-diffusion-v1-4-endpoints
 
 
 
 
 
 
 
 
 
 
8
  ---
9
- # Fork of [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)
10
- > Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input.
11
- > For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with 🧨Diffusers blog](https://huggingface.co/blog/stable_diffusion).
12
- For more information about the model, license and limitations check the original model card at [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4).
13
- ### License (CreativeML OpenRAIL-M)
14
- The full license can be found here: https://huggingface.co/spaces/CompVis/stable-diffusion-license
15
- ---
16
- This repository implements a custom `handler` task for `text-to-image` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints/blob/main/handler.py).
17
- There is also a [notebook](https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints/blob/main/create_handler.ipynb) included, on how to create the `handler.py`
18
- ### expected Request payload
19
- ```json
20
- {
21
- "inputs": "A prompt used for image generation"
22
- }
23
- ```
24
- below is an example on how to run a request using Python and `requests`.
25
- ## Run Request
26
- ```python
27
- import json
28
- from typing import List
29
- import requests as r
30
- import base64
31
- from PIL import Image
32
- from io import BytesIO
33
- ENDPOINT_URL = ""
34
- HF_TOKEN = ""
35
- # helper decoder
36
- def decode_base64_image(image_string):
37
- base64_image = base64.b64decode(image_string)
38
- buffer = BytesIO(base64_image)
39
- return Image.open(buffer)
40
- def predict(prompt:str=None):
41
- payload = {"inputs": code_snippet,"parameters": parameters}
42
- response = r.post(
43
- ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json={"inputs": prompt}
44
- )
45
- resp = response.json()
46
- return decode_base64_image(resp["image"])
47
- prediction = predict(
48
- prompt="the first animal on the mars"
49
- )
50
- ```
 
4
  - stable-diffusion
5
  - stable-diffusion-diffusers
6
  - endpoints-template
7
+
8
+ extra_gated_prompt: |-
9
+ This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
10
+ The CreativeML OpenRAIL License specifies:
11
+
12
+ 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
13
+ 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
14
+ 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
15
+ Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license
16
+
17
+ extra_gated_heading: Please read the LICENSE to access this model
18
  ---
19
+ # Stable Diffusion v1-5 Custom Inference
20
+ This repo is for running diffusion custom inference endpoints with `prompts` and an optional `image` as inputs (Unlike normal text-to-image inference). To
21
+ achieve this goal, this repo implements a `handler.py` script. For more information regarding custom inference, please visit
22
+ this [link](https://huggingface.co/docs/inference-endpoints/guides/custom_handler).
23
+ For more information about the model, license and limitations please check the original [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5)
24
+ or diffusion [documentation](https://huggingface.co/docs/diffusers/index).
25
+
26
+ ### Local test custom handler
27
+ To test custom inference locally, please run the following command:
28
+ ```commandline
29
+ python local_request.py --prompts="whale in the universe" --image="test_image.jpg"
30
+ ```
31
+ **Note**: `--image` parameter is optional.
32
+
33
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
handler.py CHANGED
@@ -1,7 +1,6 @@
1
  import base64
2
  from io import BytesIO
3
- from typing import Dict, List, Any
4
- import os
5
 
6
  import torch
7
  from PIL import Image
@@ -17,17 +16,15 @@ def decode_base64_image(image_string):
17
 
18
  class EndpointHandler:
19
  def __init__(self, path=""):
20
- print(list(os.walk(".")))
21
- self.pipe = StableDiffusionPipeline.from_pretrained("/repository/stable-diffusion-v1-5")
22
  self.pipe = self.pipe.to("cuda")
23
 
24
- def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
25
  """
26
- Args:
27
- data (:obj:):
28
- includes the input data and the parameters for the inference.
29
- Return:
30
- A :obj:`dict`:. base64 encoded image
31
  """
32
  prompts = data.pop("inputs", None)
33
  encoded_image = data.pop("image", None)
@@ -35,11 +32,10 @@ class EndpointHandler:
35
  if encoded_image:
36
  init_image = decode_base64_image(encoded_image)
37
  init_image.thumbnail((768, 768))
38
- image = self.pipe(prompts, init_image=init_image).images[0]
39
 
40
- # encode image as base 64
41
  buffered = BytesIO()
42
  image.save(buffered, format="png")
 
43
 
44
- # post process the prediction
45
- return {"image": buffered.getvalue()}
 
1
  import base64
2
  from io import BytesIO
3
+ from typing import Dict, Any
 
4
 
5
  import torch
6
  from PIL import Image
 
16
 
17
  class EndpointHandler:
18
  def __init__(self, path=""):
19
+ self.pipe = StableDiffusionPipeline.from_pretrained("/repository/stable-diffusion-v1-5",
20
+ torch_dtype=torch.float16, revision="fp16")
21
  self.pipe = self.pipe.to("cuda")
22
 
23
+ def __call__(self, data: Any) -> Dict[str, str]:
24
  """
25
+ Return predict value.
26
+ :param data: A dictionary contains `inputs` and optional `image` field.
27
+ :return: A dictionary with `image` field contains image in base64.
 
 
28
  """
29
  prompts = data.pop("inputs", None)
30
  encoded_image = data.pop("image", None)
 
32
  if encoded_image:
33
  init_image = decode_base64_image(encoded_image)
34
  init_image.thumbnail((768, 768))
 
35
 
36
+ image = self.pipe(prompts, init_image=init_image).images[0]
37
  buffered = BytesIO()
38
  image.save(buffered, format="png")
39
+ img_str = base64.b64encode(buffered.getvalue())
40
 
41
+ return {"image": img_str.decode()}