--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bertweet-emotion-base results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.945 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9285 verified: true - name: Precision Macro type: precision value: 0.8884219402987917 verified: true - name: Precision Micro type: precision value: 0.9285 verified: true - name: Precision Weighted type: precision value: 0.9294663182278102 verified: true - name: Recall Macro type: recall value: 0.8859392810987465 verified: true - name: Recall Micro type: recall value: 0.9285 verified: true - name: Recall Weighted type: recall value: 0.9285 verified: true - name: F1 Macro type: f1 value: 0.8863603878501328 verified: true - name: F1 Micro type: f1 value: 0.9285 verified: true - name: F1 Weighted type: f1 value: 0.9284728367890772 verified: true - name: loss type: loss value: 0.1349370777606964 verified: true --- # bertweet-emotion-base This model is a fine-tuned version of [Bertweet](https://huggingface.co/vinai/bertweet-base). It achieves the following results on the evaluation set: - Loss: 0.1172 - Accuracy: 0.945 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 80 - eval_batch_size: 80 - lr_scheduler_type: linear - num_epochs: 6.0 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.15.1 - Tokenizers 0.10.3