Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/config.json +148 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/configuration_phi3_v.py +210 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/genai_config.json +73 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/image_processing_phi3_v.py +273 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text-embedding.onnx +3 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text-embedding.onnx.data +3 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text.onnx +3 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text.onnx.data +3 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-vision.onnx +3 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-vision.onnx.data +3 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/preprocessor_config.json +20 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/processing_phi3_v.py +211 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/processor_config.json +35 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/special_tokens_map.json +36 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer.json +0 -0
- onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer_config.json +407 -0
.gitattributes
CHANGED
@@ -35,3 +35,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
onnx/directml/phi-3-vision-128k-instruct-int4/model.onnx.data filter=lfs diff=lfs merge=lfs -text
|
37 |
onnx/cpu_and_mobile/cpu-int4-rtn-block-32/model.onnx.data filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
onnx/directml/phi-3-vision-128k-instruct-int4/model.onnx.data filter=lfs diff=lfs merge=lfs -text
|
37 |
onnx/cpu_and_mobile/cpu-int4-rtn-block-32/model.onnx.data filter=lfs diff=lfs merge=lfs -text
|
38 |
+
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text-embedding.onnx.data filter=lfs diff=lfs merge=lfs -text
|
39 |
+
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text.onnx.data filter=lfs diff=lfs merge=lfs -text
|
40 |
+
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-vision.onnx.data filter=lfs diff=lfs merge=lfs -text
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/config.json
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Phi-3-vision-128k-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Phi3VForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_phi3_v.Phi3VConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_phi3_v.Phi3VForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"embd_layer": {
|
13 |
+
"embedding_cls": "image",
|
14 |
+
"hd_transform_order": "sub_glb",
|
15 |
+
"projection_cls": "mlp",
|
16 |
+
"use_hd_transform": true,
|
17 |
+
"with_learnable_separator": true
|
18 |
+
},
|
19 |
+
"eos_token_id": 2,
|
20 |
+
"hidden_act": "silu",
|
21 |
+
"hidden_size": 3072,
|
22 |
+
"img_processor": {
|
23 |
+
"image_dim_out": 1024,
|
24 |
+
"model_name": "openai/clip-vit-large-patch14-336",
|
25 |
+
"name": "clip_vision_model",
|
26 |
+
"num_img_tokens": 144
|
27 |
+
},
|
28 |
+
"initializer_range": 0.02,
|
29 |
+
"intermediate_size": 8192,
|
30 |
+
"max_position_embeddings": 131072,
|
31 |
+
"model_type": "phi3_v",
|
32 |
+
"num_attention_heads": 32,
|
33 |
+
"num_hidden_layers": 32,
|
34 |
+
"num_key_value_heads": 32,
|
35 |
+
"original_max_position_embeddings": 4096,
|
36 |
+
"rms_norm_eps": 1e-05,
|
37 |
+
"rope_scaling": {
|
38 |
+
"long_factor": [
|
39 |
+
1.0299999713897705,
|
40 |
+
1.0499999523162842,
|
41 |
+
1.0499999523162842,
|
42 |
+
1.0799999237060547,
|
43 |
+
1.2299998998641968,
|
44 |
+
1.2299998998641968,
|
45 |
+
1.2999999523162842,
|
46 |
+
1.4499999284744263,
|
47 |
+
1.5999999046325684,
|
48 |
+
1.6499998569488525,
|
49 |
+
1.8999998569488525,
|
50 |
+
2.859999895095825,
|
51 |
+
3.68999981880188,
|
52 |
+
5.419999599456787,
|
53 |
+
5.489999771118164,
|
54 |
+
5.489999771118164,
|
55 |
+
9.09000015258789,
|
56 |
+
11.579999923706055,
|
57 |
+
15.65999984741211,
|
58 |
+
15.769999504089355,
|
59 |
+
15.789999961853027,
|
60 |
+
18.360000610351562,
|
61 |
+
21.989999771118164,
|
62 |
+
23.079999923706055,
|
63 |
+
30.009998321533203,
|
64 |
+
32.35000228881836,
|
65 |
+
32.590003967285156,
|
66 |
+
35.56000518798828,
|
67 |
+
39.95000457763672,
|
68 |
+
53.840003967285156,
|
69 |
+
56.20000457763672,
|
70 |
+
57.95000457763672,
|
71 |
+
59.29000473022461,
|
72 |
+
59.77000427246094,
|
73 |
+
59.920005798339844,
|
74 |
+
61.190006256103516,
|
75 |
+
61.96000671386719,
|
76 |
+
62.50000762939453,
|
77 |
+
63.3700065612793,
|
78 |
+
63.48000717163086,
|
79 |
+
63.48000717163086,
|
80 |
+
63.66000747680664,
|
81 |
+
63.850006103515625,
|
82 |
+
64.08000946044922,
|
83 |
+
64.760009765625,
|
84 |
+
64.80001068115234,
|
85 |
+
64.81001281738281,
|
86 |
+
64.81001281738281
|
87 |
+
],
|
88 |
+
"short_factor": [
|
89 |
+
1.05,
|
90 |
+
1.05,
|
91 |
+
1.05,
|
92 |
+
1.1,
|
93 |
+
1.1,
|
94 |
+
1.1,
|
95 |
+
1.2500000000000002,
|
96 |
+
1.2500000000000002,
|
97 |
+
1.4000000000000004,
|
98 |
+
1.4500000000000004,
|
99 |
+
1.5500000000000005,
|
100 |
+
1.8500000000000008,
|
101 |
+
1.9000000000000008,
|
102 |
+
2.000000000000001,
|
103 |
+
2.000000000000001,
|
104 |
+
2.000000000000001,
|
105 |
+
2.000000000000001,
|
106 |
+
2.000000000000001,
|
107 |
+
2.000000000000001,
|
108 |
+
2.000000000000001,
|
109 |
+
2.000000000000001,
|
110 |
+
2.000000000000001,
|
111 |
+
2.000000000000001,
|
112 |
+
2.000000000000001,
|
113 |
+
2.000000000000001,
|
114 |
+
2.000000000000001,
|
115 |
+
2.000000000000001,
|
116 |
+
2.000000000000001,
|
117 |
+
2.000000000000001,
|
118 |
+
2.000000000000001,
|
119 |
+
2.000000000000001,
|
120 |
+
2.000000000000001,
|
121 |
+
2.1000000000000005,
|
122 |
+
2.1000000000000005,
|
123 |
+
2.2,
|
124 |
+
2.3499999999999996,
|
125 |
+
2.3499999999999996,
|
126 |
+
2.3499999999999996,
|
127 |
+
2.3499999999999996,
|
128 |
+
2.3999999999999995,
|
129 |
+
2.3999999999999995,
|
130 |
+
2.6499999999999986,
|
131 |
+
2.6999999999999984,
|
132 |
+
2.8999999999999977,
|
133 |
+
2.9499999999999975,
|
134 |
+
3.049999999999997,
|
135 |
+
3.049999999999997,
|
136 |
+
3.049999999999997
|
137 |
+
],
|
138 |
+
"type": "su"
|
139 |
+
},
|
140 |
+
"rope_theta": 10000.0,
|
141 |
+
"sliding_window": 131072,
|
142 |
+
"tie_word_embeddings": false,
|
143 |
+
"torch_dtype": "bfloat16",
|
144 |
+
"transformers_version": "4.38.1",
|
145 |
+
"use_cache": true,
|
146 |
+
"vocab_size": 32064,
|
147 |
+
"_attn_implementation": "flash_attention_2"
|
148 |
+
}
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/configuration_phi3_v.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-3-V model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI3V_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/Phi-3-vision-128k-instruct": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/config.json",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class Phi3VConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`Phi3VModel`]. It is used to instantiate a Phi-3
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the
|
35 |
+
[microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct).
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
40 |
+
Vocabulary size of the Phi-3-V model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`Phi3VModel`].
|
42 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
43 |
+
Dimension of the hidden representations.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
45 |
+
Dimension of the MLP representations.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
47 |
+
Number of hidden layers in the Transformer decoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
49 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
50 |
+
num_key_value_heads (`int`, *optional*):
|
51 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
52 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
53 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
54 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
55 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
56 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
57 |
+
`num_attention_heads`.
|
58 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
59 |
+
Dropout probability for mlp outputs.
|
60 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
61 |
+
The dropout ratio for the embeddings.
|
62 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio after computing the attention scores.
|
64 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
65 |
+
The non-linear activation function (function or string) in the decoder.
|
66 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
67 |
+
The maximum sequence length that this model might ever be used with.
|
68 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
69 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
70 |
+
original RoPE embeddings when using long scaling.
|
71 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
72 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
73 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
74 |
+
The epsilon value used for the RMSNorm.
|
75 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
77 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
78 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether to tie weight embeddings
|
80 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
81 |
+
The base period of the RoPE embeddings.
|
82 |
+
rope_scaling (`dict`, *optional*):
|
83 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
84 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
85 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
86 |
+
divided by the number of attention heads divided by 2.
|
87 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
88 |
+
The id of the "beginning-of-sequence" token.
|
89 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
90 |
+
The id of the "end-of-sequence" token.
|
91 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
92 |
+
The id of the padding token.
|
93 |
+
sliding_window (`int`, *optional*):
|
94 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
95 |
+
embd_layer (`str`, *optional*, defaults to `"default"`):
|
96 |
+
The embedding layer to use. Can be either `"default"` or `"image"`. "default" uses the standard embedding for text.
|
97 |
+
Example:
|
98 |
+
```python
|
99 |
+
>>> from transformers import Phi3VModel, Phi3VConfig
|
100 |
+
>>> # Initializing a Phi-3-V style configuration
|
101 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-vision-128k-instruct")
|
102 |
+
>>> # Initializing a model from the configuration
|
103 |
+
>>> model = Phi3VModel(configuration)
|
104 |
+
>>> # Accessing the model configuration
|
105 |
+
>>> configuration = model.config
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "phi3_v"
|
109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=32064,
|
114 |
+
hidden_size=3072,
|
115 |
+
intermediate_size=8192,
|
116 |
+
num_hidden_layers=32,
|
117 |
+
num_attention_heads=32,
|
118 |
+
num_key_value_heads=None,
|
119 |
+
resid_pdrop=0.0,
|
120 |
+
embd_pdrop=0.0,
|
121 |
+
attention_dropout=0.0,
|
122 |
+
hidden_act="silu",
|
123 |
+
max_position_embeddings=4096,
|
124 |
+
original_max_position_embeddings=4096,
|
125 |
+
initializer_range=0.02,
|
126 |
+
rms_norm_eps=1e-5,
|
127 |
+
use_cache=True,
|
128 |
+
tie_word_embeddings=False,
|
129 |
+
rope_theta=10000.0,
|
130 |
+
rope_scaling=None,
|
131 |
+
bos_token_id=1,
|
132 |
+
eos_token_id=32000,
|
133 |
+
pad_token_id=32000,
|
134 |
+
sliding_window=None,
|
135 |
+
embd_layer: str = "default",
|
136 |
+
**kwargs,
|
137 |
+
):
|
138 |
+
self.vocab_size = vocab_size
|
139 |
+
self.hidden_size = hidden_size
|
140 |
+
self.intermediate_size = intermediate_size
|
141 |
+
self.num_hidden_layers = num_hidden_layers
|
142 |
+
self.num_attention_heads = num_attention_heads
|
143 |
+
|
144 |
+
if num_key_value_heads is None:
|
145 |
+
num_key_value_heads = num_attention_heads
|
146 |
+
|
147 |
+
self.num_key_value_heads = num_key_value_heads
|
148 |
+
self.resid_pdrop = resid_pdrop
|
149 |
+
self.embd_pdrop = embd_pdrop
|
150 |
+
self.attention_dropout = attention_dropout
|
151 |
+
self.hidden_act = hidden_act
|
152 |
+
self.max_position_embeddings = max_position_embeddings
|
153 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
154 |
+
self.initializer_range = initializer_range
|
155 |
+
self.rms_norm_eps = rms_norm_eps
|
156 |
+
self.use_cache = use_cache
|
157 |
+
self.rope_theta = rope_theta
|
158 |
+
self.rope_scaling = rope_scaling
|
159 |
+
self._rope_scaling_validation()
|
160 |
+
self.sliding_window = sliding_window
|
161 |
+
self.embd_layer = embd_layer
|
162 |
+
|
163 |
+
|
164 |
+
super().__init__(
|
165 |
+
bos_token_id=bos_token_id,
|
166 |
+
eos_token_id=eos_token_id,
|
167 |
+
pad_token_id=pad_token_id,
|
168 |
+
tie_word_embeddings=tie_word_embeddings,
|
169 |
+
**kwargs,
|
170 |
+
)
|
171 |
+
|
172 |
+
def _rope_scaling_validation(self):
|
173 |
+
"""
|
174 |
+
Validate the `rope_scaling` configuration.
|
175 |
+
"""
|
176 |
+
if self.rope_scaling is None:
|
177 |
+
return
|
178 |
+
|
179 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
180 |
+
raise ValueError(
|
181 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
182 |
+
f"got {self.rope_scaling}"
|
183 |
+
)
|
184 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
185 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
186 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
187 |
+
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
|
188 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
189 |
+
if not (
|
190 |
+
isinstance(rope_scaling_short_factor, list)
|
191 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
192 |
+
):
|
193 |
+
raise ValueError(
|
194 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
195 |
+
)
|
196 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
197 |
+
raise ValueError(
|
198 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
199 |
+
)
|
200 |
+
if not (
|
201 |
+
isinstance(rope_scaling_long_factor, list)
|
202 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
203 |
+
):
|
204 |
+
raise ValueError(
|
205 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
206 |
+
)
|
207 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
208 |
+
raise ValueError(
|
209 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
210 |
+
)
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/genai_config.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"context_length": 131072,
|
5 |
+
"decoder": {
|
6 |
+
"session_options": {
|
7 |
+
"log_id": "onnxruntime-genai",
|
8 |
+
"provider_options": []
|
9 |
+
},
|
10 |
+
"filename": "phi-3-v-128k-instruct-text.onnx",
|
11 |
+
"head_size": 96,
|
12 |
+
"hidden_size": 3072,
|
13 |
+
"inputs": {
|
14 |
+
"inputs_embeds": "inputs_embeds",
|
15 |
+
"attention_mask": "attention_mask",
|
16 |
+
"past_key_names": "past_key_values.%d.key",
|
17 |
+
"past_value_names": "past_key_values.%d.value"
|
18 |
+
},
|
19 |
+
"outputs": {
|
20 |
+
"logits": "logits",
|
21 |
+
"present_key_names": "present.%d.key",
|
22 |
+
"present_value_names": "present.%d.value"
|
23 |
+
},
|
24 |
+
"num_attention_heads": 32,
|
25 |
+
"num_hidden_layers": 32,
|
26 |
+
"num_key_value_heads": 32
|
27 |
+
},
|
28 |
+
"embedding": {
|
29 |
+
"filename": "phi-3-v-128k-instruct-text-embedding.onnx",
|
30 |
+
"inputs": {
|
31 |
+
"input_ids": "input_ids"
|
32 |
+
},
|
33 |
+
"outputs": {
|
34 |
+
"inputs_embeds": "inputs_embeds"
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"vision": {
|
38 |
+
"filename": "phi-3-v-128k-instruct-vision.onnx",
|
39 |
+
"inputs": {
|
40 |
+
"pixel_values": "pixel_values",
|
41 |
+
"image_sizes": "image_sizes"
|
42 |
+
},
|
43 |
+
"outputs": {
|
44 |
+
"visual_features": "visual_features"
|
45 |
+
}
|
46 |
+
},
|
47 |
+
"eos_token_id": [
|
48 |
+
2,
|
49 |
+
32000,
|
50 |
+
32001,
|
51 |
+
32007
|
52 |
+
],
|
53 |
+
"pad_token_id": 32000,
|
54 |
+
"type": "phi3v",
|
55 |
+
"vocab_size": 32064
|
56 |
+
},
|
57 |
+
"search": {
|
58 |
+
"diversity_penalty": 0.0,
|
59 |
+
"do_sample": false,
|
60 |
+
"early_stopping": true,
|
61 |
+
"length_penalty": 1.0,
|
62 |
+
"max_length": 131072,
|
63 |
+
"min_length": 0,
|
64 |
+
"no_repeat_ngram_size": 0,
|
65 |
+
"num_beams": 1,
|
66 |
+
"num_return_sequences": 1,
|
67 |
+
"past_present_share_buffer": true,
|
68 |
+
"repetition_penalty": 1.0,
|
69 |
+
"temperature": 1.0,
|
70 |
+
"top_k": 1,
|
71 |
+
"top_p": 1.0
|
72 |
+
}
|
73 |
+
}
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/image_processing_phi3_v.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Image processor class for Phi3-V."""
|
17 |
+
|
18 |
+
from typing import List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
23 |
+
from transformers.image_transforms import (
|
24 |
+
convert_to_rgb,
|
25 |
+
)
|
26 |
+
from transformers.image_utils import (
|
27 |
+
OPENAI_CLIP_MEAN,
|
28 |
+
OPENAI_CLIP_STD,
|
29 |
+
ImageInput,
|
30 |
+
make_list_of_images,
|
31 |
+
valid_images,
|
32 |
+
)
|
33 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
34 |
+
|
35 |
+
from transformers import AutoImageProcessor
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
if is_vision_available():
|
41 |
+
from PIL import Image
|
42 |
+
|
43 |
+
import torch
|
44 |
+
import torchvision
|
45 |
+
|
46 |
+
def padding_336(b):
|
47 |
+
width, height = b.size
|
48 |
+
tar = int(np.ceil(height / 336) * 336)
|
49 |
+
top_padding = int((tar - height)/2)
|
50 |
+
bottom_padding = tar - height - top_padding
|
51 |
+
left_padding = 0
|
52 |
+
right_padding = 0
|
53 |
+
b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
|
54 |
+
|
55 |
+
return b
|
56 |
+
|
57 |
+
def calc_padded_size(width, height, padding_unit=336):
|
58 |
+
target_height = int(np.ceil(height / padding_unit) * padding_unit)
|
59 |
+
top_padding = int((target_height - height) / 2)
|
60 |
+
bottom_padding = target_height - height - top_padding
|
61 |
+
left_padding = 0
|
62 |
+
right_padding = 0
|
63 |
+
padded_width = width + left_padding + right_padding
|
64 |
+
padded_height = height + top_padding + bottom_padding
|
65 |
+
return padded_width, padded_height
|
66 |
+
|
67 |
+
def HD_transform(img, hd_num=16):
|
68 |
+
width, height = img.size
|
69 |
+
trans = False
|
70 |
+
if width < height:
|
71 |
+
img = img.transpose(Image.TRANSPOSE)
|
72 |
+
trans = True
|
73 |
+
width, height = img.size
|
74 |
+
ratio = (width/ height)
|
75 |
+
scale = 1
|
76 |
+
while scale*np.ceil(scale/ratio) <= hd_num:
|
77 |
+
scale += 1
|
78 |
+
scale -= 1
|
79 |
+
new_w = int(scale * 336)
|
80 |
+
new_h = int(new_w / ratio)
|
81 |
+
|
82 |
+
img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
|
83 |
+
img = padding_336(img)
|
84 |
+
width, height = img.size
|
85 |
+
if trans:
|
86 |
+
img = img.transpose(Image.TRANSPOSE)
|
87 |
+
|
88 |
+
return img
|
89 |
+
|
90 |
+
def calc_hd_transform_size(width, height, hd_num=16):
|
91 |
+
transposed = False
|
92 |
+
if width < height:
|
93 |
+
width, height = height, width
|
94 |
+
transposed = True
|
95 |
+
|
96 |
+
ratio = width / height
|
97 |
+
scale = 1
|
98 |
+
while scale * np.ceil(scale / ratio) <= hd_num:
|
99 |
+
scale += 1
|
100 |
+
scale -= 1
|
101 |
+
|
102 |
+
new_width = int(scale * 336)
|
103 |
+
new_height = int(new_width / ratio)
|
104 |
+
|
105 |
+
padded_width, padded_height = calc_padded_size(new_width, new_height)
|
106 |
+
|
107 |
+
if transposed:
|
108 |
+
padded_width, padded_height = padded_height, padded_width
|
109 |
+
|
110 |
+
return padded_width, padded_height
|
111 |
+
|
112 |
+
def pad_to_max_num_crops_tensor(images, max_crops=5):
|
113 |
+
"""
|
114 |
+
images: B x 3 x H x W, B<=max_crops
|
115 |
+
"""
|
116 |
+
B, _, H, W = images.shape
|
117 |
+
if B < max_crops:
|
118 |
+
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
|
119 |
+
images = torch.cat([images, pad], dim=0)
|
120 |
+
return images
|
121 |
+
|
122 |
+
|
123 |
+
class Phi3VImageProcessor(BaseImageProcessor):
|
124 |
+
r"""
|
125 |
+
Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
|
126 |
+
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
|
127 |
+
Args:
|
128 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
129 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
130 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
131 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
132 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
133 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
134 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
135 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
136 |
+
Whether to convert the image to RGB.
|
137 |
+
"""
|
138 |
+
|
139 |
+
model_input_names = ["pixel_values"]
|
140 |
+
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
num_crops: int = 1,
|
144 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
145 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
146 |
+
do_convert_rgb: bool = True,
|
147 |
+
**kwargs,
|
148 |
+
) -> None:
|
149 |
+
super().__init__(**kwargs)
|
150 |
+
self.num_crops = num_crops
|
151 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
152 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
153 |
+
self.do_convert_rgb = do_convert_rgb
|
154 |
+
|
155 |
+
def calc_num_image_tokens(
|
156 |
+
self,
|
157 |
+
images: ImageInput
|
158 |
+
):
|
159 |
+
""" Calculate the number of image tokens for each image.
|
160 |
+
Args:
|
161 |
+
images (`ImageInput`):
|
162 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
163 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
164 |
+
"""
|
165 |
+
images = make_list_of_images(images)
|
166 |
+
|
167 |
+
if not valid_images(images):
|
168 |
+
raise ValueError(
|
169 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
170 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
171 |
+
)
|
172 |
+
|
173 |
+
images = [image.convert('RGB') for image in images]
|
174 |
+
# (H, W, C)
|
175 |
+
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
176 |
+
shapes = [[im.size[1], im.size[0]] for im in elems]
|
177 |
+
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
178 |
+
return num_img_tokens
|
179 |
+
|
180 |
+
def calc_num_image_tokens_from_image_size(self, width, height):
|
181 |
+
"""
|
182 |
+
Calculate the number of image tokens for a given image size.
|
183 |
+
Args:
|
184 |
+
width (`int`): Width of the image.
|
185 |
+
height (`int`): Height of the image.
|
186 |
+
"""
|
187 |
+
new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
|
188 |
+
num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
|
189 |
+
return num_img_tokens
|
190 |
+
|
191 |
+
def preprocess(
|
192 |
+
self,
|
193 |
+
images: ImageInput,
|
194 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
195 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
196 |
+
do_convert_rgb: bool = None,
|
197 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
198 |
+
):
|
199 |
+
"""
|
200 |
+
Args:
|
201 |
+
images (`ImageInput`):
|
202 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
203 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
204 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
205 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
206 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
207 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
208 |
+
`True`.
|
209 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
210 |
+
Whether to convert the image to RGB.
|
211 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
212 |
+
The type of tensors to return. Can be one of:
|
213 |
+
- Unset: Return a list of `np.ndarray`.
|
214 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
215 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
216 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
217 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
218 |
+
"""
|
219 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
220 |
+
image_std = image_std if image_std is not None else self.image_std
|
221 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
222 |
+
|
223 |
+
images = make_list_of_images(images)
|
224 |
+
|
225 |
+
if not valid_images(images):
|
226 |
+
raise ValueError(
|
227 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
228 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
229 |
+
)
|
230 |
+
|
231 |
+
if do_convert_rgb:
|
232 |
+
images = [convert_to_rgb(image) for image in images]
|
233 |
+
|
234 |
+
image_sizes = []
|
235 |
+
img_processor = torchvision.transforms.Compose([
|
236 |
+
torchvision.transforms.ToTensor(),
|
237 |
+
torchvision.transforms.Normalize(image_mean, image_std)
|
238 |
+
])
|
239 |
+
|
240 |
+
# PIL images
|
241 |
+
# HD_transform pad images to size of multiiply of 336, 336
|
242 |
+
# convert to RGB first
|
243 |
+
images = [image.convert('RGB') for image in images]
|
244 |
+
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
245 |
+
# tensor transform and normalize
|
246 |
+
hd_images = [img_processor(im) for im in elems]
|
247 |
+
# create global image
|
248 |
+
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
|
249 |
+
|
250 |
+
# [(3, h, w)], where h, w is multiple of 336
|
251 |
+
shapes = [[im.size(1), im.size(2)] for im in hd_images]
|
252 |
+
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
253 |
+
# reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
|
254 |
+
# (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
|
255 |
+
hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
|
256 |
+
# concat global image and local image
|
257 |
+
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
|
258 |
+
|
259 |
+
# pad to max_num_crops
|
260 |
+
image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
|
261 |
+
image_transformed = torch.stack(image_transformed, dim=0)
|
262 |
+
image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
|
263 |
+
padded_images = image_transformed
|
264 |
+
image_sizes = shapes
|
265 |
+
|
266 |
+
data = {"pixel_values": padded_images,
|
267 |
+
"image_sizes": image_sizes,
|
268 |
+
"num_img_tokens": num_img_tokens
|
269 |
+
}
|
270 |
+
|
271 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
272 |
+
|
273 |
+
AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text-embedding.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80d4bef0a944c6c826e2aab6b9ba3384c208142167b6f108f7c1fbca0cf1b2ec
|
3 |
+
size 411
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text-embedding.onnx.data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ff71ee46ce8a76b05e327bc2fa13fe694723621bc0ddb857efc326934881e75
|
3 |
+
size 394002432
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:255026552017d9cdf4041b5140609158afd2b185463098e69b68ab6083869e1e
|
3 |
+
size 52125012
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-text.onnx.data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81967c3ae100a6b9a47abe34ecb9ee7ef9256bbb36aae02fc22faec4f571d69f
|
3 |
+
size 2327285760
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-vision.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ca4a1114104165c6ae99087f4ca5001500be2328db5d6254b8cd369f21b3a83
|
3 |
+
size 402875
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3-v-128k-instruct-vision.onnx.data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:890b25ca58548e0e7ea88ce4325a58d08e753cc179dfa4893e09e7594d02b860
|
3 |
+
size 444899848
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/preprocessor_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_phi3_v.Phi3VProcessor",
|
4 |
+
"AutoImageProcessor": "image_processing_phi3_v.Phi3VImageProcessor"
|
5 |
+
},
|
6 |
+
"num_crops": 16,
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_processor_type": "Phi3VImageProcessor",
|
13 |
+
"image_std": [
|
14 |
+
0.26862954,
|
15 |
+
0.26130258,
|
16 |
+
0.27577711
|
17 |
+
],
|
18 |
+
"processor_class": "Phi3VProcessor",
|
19 |
+
"num_img_tokens": 144
|
20 |
+
}
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/processing_phi3_v.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Processor class for Phi3-V.
|
18 |
+
"""
|
19 |
+
import re
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
|
24 |
+
import transformers
|
25 |
+
from transformers.feature_extraction_utils import BatchFeature
|
26 |
+
from transformers.image_utils import ImageInput
|
27 |
+
from transformers.processing_utils import ProcessorMixin
|
28 |
+
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
|
29 |
+
from transformers.utils import TensorType
|
30 |
+
from .image_processing_phi3_v import Phi3VImageProcessor
|
31 |
+
transformers.Phi3VImageProcessor = Phi3VImageProcessor
|
32 |
+
|
33 |
+
class Phi3VProcessor(ProcessorMixin):
|
34 |
+
r"""
|
35 |
+
Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
|
36 |
+
[`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
37 |
+
[`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
|
38 |
+
Args:
|
39 |
+
image_processor ([`Phi3VImageProcessor`], *optional*):
|
40 |
+
The image processor is a required input.
|
41 |
+
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
42 |
+
The tokenizer is a required input.
|
43 |
+
"""
|
44 |
+
|
45 |
+
attributes = ["image_processor", "tokenizer"]
|
46 |
+
image_processor_class = "Phi3VImageProcessor"
|
47 |
+
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
48 |
+
special_image_token = "<|image|>"
|
49 |
+
|
50 |
+
def __init__(self, image_processor, tokenizer):
|
51 |
+
self.image_processor = image_processor
|
52 |
+
self.tokenizer = tokenizer
|
53 |
+
self.num_img_tokens = image_processor.num_img_tokens
|
54 |
+
self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
|
55 |
+
|
56 |
+
def __call__(
|
57 |
+
self,
|
58 |
+
text: Union[TextInput, List[TextInput]],
|
59 |
+
images: ImageInput = None,
|
60 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
61 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
62 |
+
max_length=None,
|
63 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
64 |
+
) -> BatchFeature:
|
65 |
+
"""
|
66 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
67 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
68 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
69 |
+
Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
70 |
+
of the above two methods for more information.
|
71 |
+
Args:
|
72 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
73 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
74 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
75 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
76 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
77 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
78 |
+
tensor. Both channels-first and channels-last formats are supported.
|
79 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
80 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
81 |
+
index) among:
|
82 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
83 |
+
sequence if provided).
|
84 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
85 |
+
acceptable input length for the model if that argument is not provided.
|
86 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
87 |
+
lengths).
|
88 |
+
max_length (`int`, *optional*):
|
89 |
+
Maximum length of the returned list and optionally padding length (see above).
|
90 |
+
truncation (`bool`, *optional*):
|
91 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
92 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
93 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
94 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
95 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
96 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
97 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
98 |
+
Returns:
|
99 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
100 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
101 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
102 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
103 |
+
`None`).
|
104 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
105 |
+
"""
|
106 |
+
if images is not None:
|
107 |
+
image_inputs = self.image_processor(images, return_tensors=return_tensors)
|
108 |
+
else:
|
109 |
+
image_inputs = {}
|
110 |
+
inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
|
111 |
+
return inputs
|
112 |
+
|
113 |
+
def calc_num_image_tokens(self, images: ImageInput):
|
114 |
+
""" Calculate the number of image tokens for each image.
|
115 |
+
Args:
|
116 |
+
images (`ImageInput`):
|
117 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
118 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
119 |
+
"""
|
120 |
+
return self.image_processor.calc_num_image_tokens(images)
|
121 |
+
|
122 |
+
def calc_num_image_tokens_from_image_size(self, width, height):
|
123 |
+
""" Calculate the number of image token for an image with given width and height.
|
124 |
+
Args:
|
125 |
+
width (`int`):
|
126 |
+
Width of the image.
|
127 |
+
height (`int`):
|
128 |
+
Height of the image.
|
129 |
+
"""
|
130 |
+
return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
|
131 |
+
|
132 |
+
|
133 |
+
@property
|
134 |
+
def special_image_token_id(self):
|
135 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
136 |
+
|
137 |
+
def get_special_image_token_id(self):
|
138 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
139 |
+
|
140 |
+
def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):
|
141 |
+
|
142 |
+
if not len(images):
|
143 |
+
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
|
144 |
+
return BatchFeature(data={**model_inputs})
|
145 |
+
|
146 |
+
pattern = r"<\|image_\d+\|>"
|
147 |
+
prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)]
|
148 |
+
|
149 |
+
if 'num_img_tokens' in images:
|
150 |
+
num_img_tokens = images['num_img_tokens']
|
151 |
+
else:
|
152 |
+
assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
|
153 |
+
num_crops = images['num_crops']
|
154 |
+
num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
|
155 |
+
|
156 |
+
images, image_sizes = images['pixel_values'], images['image_sizes']
|
157 |
+
|
158 |
+
# image_tags needs to start from 1 to n
|
159 |
+
image_tags = re.findall(pattern, texts)
|
160 |
+
# image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
|
161 |
+
# image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
|
162 |
+
image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
|
163 |
+
unique_image_ids = sorted(list(set(image_ids)))
|
164 |
+
# image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
|
165 |
+
# check the condition
|
166 |
+
assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
|
167 |
+
# total images must be the same as the number of image tags
|
168 |
+
assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
|
169 |
+
|
170 |
+
image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]
|
171 |
+
|
172 |
+
def insert_separator(X, sep_list):
|
173 |
+
if len(X) > len(sep_list):
|
174 |
+
sep_list.append([])
|
175 |
+
return [ele for sublist in zip(X, sep_list) for ele in sublist]
|
176 |
+
input_ids = []
|
177 |
+
offset = 0
|
178 |
+
for x in insert_separator(prompt_chunks, image_ids_pad):
|
179 |
+
input_ids.extend(x[offset:])
|
180 |
+
|
181 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
|
182 |
+
attention_mask = (input_ids > -1000000).to(torch.long)
|
183 |
+
|
184 |
+
return BatchFeature(data={"input_ids": input_ids,
|
185 |
+
"attention_mask": attention_mask,
|
186 |
+
"pixel_values": images,
|
187 |
+
"image_sizes": image_sizes})
|
188 |
+
|
189 |
+
|
190 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
191 |
+
def batch_decode(self, *args, **kwargs):
|
192 |
+
"""
|
193 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
194 |
+
refer to the docstring of this method for more information.
|
195 |
+
"""
|
196 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
197 |
+
|
198 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
199 |
+
def decode(self, *args, **kwargs):
|
200 |
+
"""
|
201 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
202 |
+
the docstring of this method for more information.
|
203 |
+
"""
|
204 |
+
return self.tokenizer.decode(*args, **kwargs)
|
205 |
+
|
206 |
+
@property
|
207 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
208 |
+
def model_input_names(self):
|
209 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
210 |
+
image_processor_input_names = self.image_processor.model_input_names
|
211 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/processor_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"processor": {
|
3 |
+
"name": "image_processing",
|
4 |
+
"transforms": [
|
5 |
+
{
|
6 |
+
"operation": {
|
7 |
+
"name": "decode_image",
|
8 |
+
"domain": "com.microsoft.extensions",
|
9 |
+
"type": "DecodeImage",
|
10 |
+
"attrs": {
|
11 |
+
"color_space": "BGR"
|
12 |
+
}
|
13 |
+
}
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"operation": {
|
17 |
+
"name": "convert_to_rgb",
|
18 |
+
"domain": "com.microsoft.extensions",
|
19 |
+
"type": "ConvertRGB"
|
20 |
+
}
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"operation": {
|
24 |
+
"name": "phi3_image_transform",
|
25 |
+
"domain": "com.microsoft.extensions",
|
26 |
+
"type": "Phi3ImageTransform",
|
27 |
+
"attrs": {
|
28 |
+
"num_crops": 16,
|
29 |
+
"num_img_tokens": 144
|
30 |
+
}
|
31 |
+
}
|
32 |
+
}
|
33 |
+
]
|
34 |
+
}
|
35 |
+
}
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/special_tokens_map.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|system|>",
|
4 |
+
"<|end|>",
|
5 |
+
"<|user|>",
|
6 |
+
"<|end|>"
|
7 |
+
],
|
8 |
+
"bos_token": {
|
9 |
+
"content": "<s>",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": false,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
},
|
15 |
+
"eos_token": {
|
16 |
+
"content": "<|endoftext|>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": false,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false
|
21 |
+
},
|
22 |
+
"pad_token": {
|
23 |
+
"content": "<|endoftext|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
},
|
29 |
+
"unk_token": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false
|
35 |
+
}
|
36 |
+
}
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
onnx/cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer_config.json
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": true,
|
26 |
+
"single_word": false,
|
27 |
+
"special": false
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|endoftext|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|assistant|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": true,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"32002": {
|
46 |
+
"content": "<|placeholder1|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": true,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"32003": {
|
54 |
+
"content": "<|placeholder2|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": true,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"32004": {
|
62 |
+
"content": "<|placeholder3|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": true,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"32005": {
|
70 |
+
"content": "<|placeholder4|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": true,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"32006": {
|
78 |
+
"content": "<|system|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"32007": {
|
86 |
+
"content": "<|end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"32008": {
|
94 |
+
"content": "<|placeholder5|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": true,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"32009": {
|
102 |
+
"content": "<|placeholder6|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": true,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"32010": {
|
110 |
+
"content": "<|user|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"32011": {
|
118 |
+
"content": "<|step|>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": true,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"32012": {
|
126 |
+
"content": "<|function_output|>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": true,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"32013": {
|
134 |
+
"content": "<|tag|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": true,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
},
|
141 |
+
"32014": {
|
142 |
+
"content": "<|function_call|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": true,
|
146 |
+
"single_word": false,
|
147 |
+
"special": true
|
148 |
+
},
|
149 |
+
"32015": {
|
150 |
+
"content": "<|raw|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": true,
|
154 |
+
"single_word": false,
|
155 |
+
"special": true
|
156 |
+
},
|
157 |
+
"32016": {
|
158 |
+
"content": "<|continue|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": true,
|
162 |
+
"single_word": false,
|
163 |
+
"special": true
|
164 |
+
},
|
165 |
+
"32017": {
|
166 |
+
"content": "<|function_list|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": true,
|
170 |
+
"single_word": false,
|
171 |
+
"special": true
|
172 |
+
},
|
173 |
+
"32018": {
|
174 |
+
"content": "<|calc|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": true,
|
178 |
+
"single_word": false,
|
179 |
+
"special": true
|
180 |
+
},
|
181 |
+
"32019": {
|
182 |
+
"content": "<|code|>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": true,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
},
|
189 |
+
"32020": {
|
190 |
+
"content": "<|/code|>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": true,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
},
|
197 |
+
"32021": {
|
198 |
+
"content": "<|summary|>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": true,
|
202 |
+
"single_word": false,
|
203 |
+
"special": true
|
204 |
+
},
|
205 |
+
"32022": {
|
206 |
+
"content": "<|resource|>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": true,
|
210 |
+
"single_word": false,
|
211 |
+
"special": true
|
212 |
+
},
|
213 |
+
"32023": {
|
214 |
+
"content": "<|assistant_mask|>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": true,
|
218 |
+
"single_word": false,
|
219 |
+
"special": true
|
220 |
+
},
|
221 |
+
"32024": {
|
222 |
+
"content": "<|start|>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": true,
|
226 |
+
"single_word": false,
|
227 |
+
"special": true
|
228 |
+
},
|
229 |
+
"32025": {
|
230 |
+
"content": "<|message|>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": true,
|
234 |
+
"single_word": false,
|
235 |
+
"special": true
|
236 |
+
},
|
237 |
+
"32026": {
|
238 |
+
"content": "<|fim_prefix|>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": true,
|
242 |
+
"single_word": false,
|
243 |
+
"special": true
|
244 |
+
},
|
245 |
+
"32027": {
|
246 |
+
"content": "<|fim_middle|>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": true,
|
250 |
+
"single_word": false,
|
251 |
+
"special": true
|
252 |
+
},
|
253 |
+
"32028": {
|
254 |
+
"content": "<|fim_suffix|>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": true,
|
258 |
+
"single_word": false,
|
259 |
+
"special": true
|
260 |
+
},
|
261 |
+
"32029": {
|
262 |
+
"content": "<|meta_start|>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": true,
|
266 |
+
"single_word": false,
|
267 |
+
"special": true
|
268 |
+
},
|
269 |
+
"32030": {
|
270 |
+
"content": "<|ipynb_marker|>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": true,
|
274 |
+
"single_word": false,
|
275 |
+
"special": true
|
276 |
+
},
|
277 |
+
"32031": {
|
278 |
+
"content": "<|diff_marker|>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": true,
|
282 |
+
"single_word": false,
|
283 |
+
"special": true
|
284 |
+
},
|
285 |
+
"32032": {
|
286 |
+
"content": "<|ghissue|>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": true,
|
290 |
+
"single_word": false,
|
291 |
+
"special": true
|
292 |
+
},
|
293 |
+
"32033": {
|
294 |
+
"content": "<|ghreview|>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": true,
|
298 |
+
"single_word": false,
|
299 |
+
"special": true
|
300 |
+
},
|
301 |
+
"32034": {
|
302 |
+
"content": "<|disc_start|>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": true,
|
306 |
+
"single_word": false,
|
307 |
+
"special": true
|
308 |
+
},
|
309 |
+
"32035": {
|
310 |
+
"content": "<|disc_sep|>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": true,
|
314 |
+
"single_word": false,
|
315 |
+
"special": true
|
316 |
+
},
|
317 |
+
"32036": {
|
318 |
+
"content": "<|disc_thread|><|query|>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": true,
|
322 |
+
"single_word": false,
|
323 |
+
"special": true
|
324 |
+
},
|
325 |
+
"32037": {
|
326 |
+
"content": "<|/query|>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": true,
|
330 |
+
"single_word": false,
|
331 |
+
"special": true
|
332 |
+
},
|
333 |
+
"32038": {
|
334 |
+
"content": "<|data|>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": true,
|
338 |
+
"single_word": false,
|
339 |
+
"special": true
|
340 |
+
},
|
341 |
+
"32039": {
|
342 |
+
"content": "<|/data|>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": true,
|
346 |
+
"single_word": false,
|
347 |
+
"special": true
|
348 |
+
},
|
349 |
+
"32040": {
|
350 |
+
"content": "<|sys|>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": true,
|
354 |
+
"single_word": false,
|
355 |
+
"special": true
|
356 |
+
},
|
357 |
+
"32041": {
|
358 |
+
"content": "<|/sys|>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": true,
|
362 |
+
"single_word": false,
|
363 |
+
"special": true
|
364 |
+
},
|
365 |
+
"32042": {
|
366 |
+
"content": "<|inst|>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": true,
|
370 |
+
"single_word": false,
|
371 |
+
"special": true
|
372 |
+
},
|
373 |
+
"32043": {
|
374 |
+
"content": "<|/inst|>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": true,
|
378 |
+
"single_word": false,
|
379 |
+
"special": true
|
380 |
+
},
|
381 |
+
"32044": {
|
382 |
+
"content": "<|image|>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": true,
|
386 |
+
"single_word": false,
|
387 |
+
"special": true
|
388 |
+
}
|
389 |
+
},
|
390 |
+
"additional_special_tokens": [
|
391 |
+
"<|system|>",
|
392 |
+
"<|end|>",
|
393 |
+
"<|user|>",
|
394 |
+
"<|end|>"
|
395 |
+
],
|
396 |
+
"bos_token": "<s>",
|
397 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if loop.last and message['role'] == 'user' %}<|user|>\n<|image_1|>\n{{ message['content'] }}\n<|end|>\n<|assistant|>\n{% elif message['role'] == 'user' %}<|user|>\n{{ message['content'] }}\n<|end|>\n<|assistant|>\n{% elif message['role'] == 'assistant' %}{{ message['content'] }}\n<|end|>\n{% endif %}{% endfor %}",
|
398 |
+
"clean_up_tokenization_spaces": false,
|
399 |
+
"eos_token": "<|endoftext|>",
|
400 |
+
"model_max_length": 131072,
|
401 |
+
"pad_token": "<|endoftext|>",
|
402 |
+
"padding_side": "right",
|
403 |
+
"sp_model_kwargs": {},
|
404 |
+
"tokenizer_class": "LlamaTokenizer",
|
405 |
+
"unk_token": "<unk>",
|
406 |
+
"use_default_system_prompt": false
|
407 |
+
}
|