noobhappylife commited on
Commit
d50a365
1 Parent(s): 2328f52

Upload folder using huggingface_hub

Browse files
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/home/sdp/models/models--BAAI--bge-m3/snapshots/5617a9f61b028005a4858fdac845db406aefb181",
3
  "architectures": [
4
  "XLMRobertaModel"
5
  ],
@@ -7,7 +7,6 @@
7
  "bos_token_id": 0,
8
  "classifier_dropout": null,
9
  "eos_token_id": 2,
10
- "export_model_type": "transformer",
11
  "hidden_act": "gelu",
12
  "hidden_dropout_prob": 0.1,
13
  "hidden_size": 1024,
@@ -21,8 +20,7 @@
21
  "output_past": true,
22
  "pad_token_id": 1,
23
  "position_embedding_type": "absolute",
24
- "torch_dtype": "float32",
25
- "transformers_version": "4.43.4",
26
  "type_vocab_size": 1,
27
  "use_cache": true,
28
  "vocab_size": 250002
 
1
  {
2
+ "_name_or_path": "/home/devcloud/hf_models/models--BAAI--bge-m3/snapshots/5617a9f61b028005a4858fdac845db406aefb181",
3
  "architectures": [
4
  "XLMRobertaModel"
5
  ],
 
7
  "bos_token_id": 0,
8
  "classifier_dropout": null,
9
  "eos_token_id": 2,
 
10
  "hidden_act": "gelu",
11
  "hidden_dropout_prob": 0.1,
12
  "hidden_size": 1024,
 
20
  "output_past": true,
21
  "pad_token_id": 1,
22
  "position_embedding_type": "absolute",
23
+ "transformers_version": "4.44.2",
 
24
  "type_vocab_size": 1,
25
  "use_cache": true,
26
  "vocab_size": 250002
openvino_detokenizer.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:17d9c72b4fd3ba3c83bb35f22139463e4ab99b47fae7ae3ac8187243dd58d277
3
- size 5069133
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:380fc66ab8383c059042bb1bfde7fced8c0b061f824544ab0b2059ef55a1be66
3
+ size 5069127
openvino_detokenizer.xml CHANGED
@@ -1,24 +1,24 @@
1
  <?xml version="1.0"?>
2
  <net name="detokenizer" version="11">
3
  <layers>
4
- <layer id="0" name="Parameter_19724" type="Parameter" version="opset1">
5
  <data shape="?,?" element_type="i64" />
6
  <output>
7
- <port id="0" precision="I64" names="Parameter_19724">
8
  <dim>-1</dim>
9
  <dim>-1</dim>
10
  </port>
11
  </output>
12
  </layer>
13
- <layer id="1" name="Constant_19704" type="Const" version="opset1">
14
- <data element_type="u8" shape="5069084" offset="0" size="5069084" />
15
  <output>
16
  <port id="0" precision="U8">
17
- <dim>5069084</dim>
18
  </port>
19
  </output>
20
  </layer>
21
- <layer id="2" name="Convert_19739" type="Convert" version="opset1">
22
  <data destination_type="i32" />
23
  <input>
24
  <port id="0" precision="I64">
@@ -33,10 +33,10 @@
33
  </port>
34
  </output>
35
  </layer>
36
- <layer id="3" name="SentencepieceDetokenizer_19725" type="SentencepieceDetokenizer" version="extension">
37
  <input>
38
  <port id="0" precision="U8">
39
- <dim>5069084</dim>
40
  </port>
41
  <port id="1" precision="I32">
42
  <dim>-1</dim>
@@ -55,23 +55,23 @@
55
  </port>
56
  </output>
57
  </layer>
58
- <layer id="4" name="Constant_19727" type="Const" version="opset1">
59
- <data element_type="u8" shape="47" offset="5069084" size="47" />
60
  <output>
61
  <port id="0" precision="U8">
62
  <dim>47</dim>
63
  </port>
64
  </output>
65
  </layer>
66
- <layer id="5" name="Constant_19729" type="Const" version="opset1">
67
- <data element_type="u8" shape="2" offset="5069131" size="2" />
68
  <output>
69
  <port id="0" precision="U8">
70
  <dim>2</dim>
71
  </port>
72
  </output>
73
  </layer>
74
- <layer id="6" name="RegexNormalization_19730" type="RegexNormalization" version="extension">
75
  <data global_replace="true" />
76
  <input>
77
  <port id="0" precision="I32">
@@ -102,7 +102,7 @@
102
  </port>
103
  </output>
104
  </layer>
105
- <layer id="7" name="StringTensorPack_19731" type="StringTensorPack" version="extension">
106
  <data mode="begins_ends" />
107
  <input>
108
  <port id="0" precision="I32">
@@ -121,7 +121,7 @@
121
  </port>
122
  </output>
123
  </layer>
124
- <layer id="8" name="Result_19732" type="Result" version="opset1">
125
  <input>
126
  <port id="0" precision="STRING">
127
  <dim>-1</dim>
@@ -144,10 +144,29 @@
144
  <edge from-layer="7" from-port="3" to-layer="8" to-port="0" />
145
  </edges>
146
  <rt_info>
 
 
 
147
  <bos_token_id value="0" />
148
- <chat_template value="{% for message in messages %}{{'&lt;|im_start|>' + message['role'] + '&#10;' + message['content'] + '&lt;|im_end|>' + '&#10;'}}{% endfor %}{% if add_generation_prompt %}{{ '&lt;|im_start|>assistant&#10;' }}{% endif %}" />
 
149
  <eos_token_id value="2" />
 
 
 
 
150
  <original_tokenizer_class value="&lt;class 'transformers.models.xlm_roberta.tokenization_xlm_roberta_fast.XLMRobertaTokenizerFast'>" />
151
  <pad_token_id value="1" />
 
 
 
 
 
 
 
 
 
 
 
152
  </rt_info>
153
  </net>
 
1
  <?xml version="1.0"?>
2
  <net name="detokenizer" version="11">
3
  <layers>
4
+ <layer id="0" name="Parameter_15402" type="Parameter" version="opset1">
5
  <data shape="?,?" element_type="i64" />
6
  <output>
7
+ <port id="0" precision="I64" names="Parameter_15402">
8
  <dim>-1</dim>
9
  <dim>-1</dim>
10
  </port>
11
  </output>
12
  </layer>
13
+ <layer id="1" name="Constant_15374" type="Const" version="opset1">
14
+ <data element_type="u8" shape="5069078" offset="0" size="5069078" />
15
  <output>
16
  <port id="0" precision="U8">
17
+ <dim>5069078</dim>
18
  </port>
19
  </output>
20
  </layer>
21
+ <layer id="2" name="Convert_15417" type="Convert" version="opset1">
22
  <data destination_type="i32" />
23
  <input>
24
  <port id="0" precision="I64">
 
33
  </port>
34
  </output>
35
  </layer>
36
+ <layer id="3" name="SentencepieceDetokenizer_15403" type="SentencepieceDetokenizer" version="extension">
37
  <input>
38
  <port id="0" precision="U8">
39
+ <dim>5069078</dim>
40
  </port>
41
  <port id="1" precision="I32">
42
  <dim>-1</dim>
 
55
  </port>
56
  </output>
57
  </layer>
58
+ <layer id="4" name="Constant_15405" type="Const" version="opset1">
59
+ <data element_type="u8" shape="47" offset="5069078" size="47" />
60
  <output>
61
  <port id="0" precision="U8">
62
  <dim>47</dim>
63
  </port>
64
  </output>
65
  </layer>
66
+ <layer id="5" name="Constant_15407" type="Const" version="opset1">
67
+ <data element_type="u8" shape="2" offset="5069125" size="2" />
68
  <output>
69
  <port id="0" precision="U8">
70
  <dim>2</dim>
71
  </port>
72
  </output>
73
  </layer>
74
+ <layer id="6" name="RegexNormalization_15408" type="RegexNormalization" version="extension">
75
  <data global_replace="true" />
76
  <input>
77
  <port id="0" precision="I32">
 
102
  </port>
103
  </output>
104
  </layer>
105
+ <layer id="7" name="StringTensorPack_15409" type="StringTensorPack" version="extension">
106
  <data mode="begins_ends" />
107
  <input>
108
  <port id="0" precision="I32">
 
121
  </port>
122
  </output>
123
  </layer>
124
+ <layer id="8" name="Result_15410" type="Result" version="opset1">
125
  <input>
126
  <port id="0" precision="STRING">
127
  <dim>-1</dim>
 
144
  <edge from-layer="7" from-port="3" to-layer="8" to-port="0" />
145
  </edges>
146
  <rt_info>
147
+ <add_attention_mask value="True" />
148
+ <add_prefix_space value="True" />
149
+ <add_special_tokens value="True" />
150
  <bos_token_id value="0" />
151
+ <clean_up_tokenization_spaces value="True" />
152
+ <detokenizer_input_type value="i64" />
153
  <eos_token_id value="2" />
154
+ <handle_special_tokens_with_re value="False" />
155
+ <number_of_inputs value="1" />
156
+ <openvino_tokenizers_version value="2024.5.0.0.dev20241101" />
157
+ <openvino_version value="2024.5.0.dev20241101" />
158
  <original_tokenizer_class value="&lt;class 'transformers.models.xlm_roberta.tokenization_xlm_roberta_fast.XLMRobertaTokenizerFast'>" />
159
  <pad_token_id value="1" />
160
+ <sentencepiece_version value="0.2.0" />
161
+ <skip_special_tokens value="True" />
162
+ <streaming_detokenizer value="False" />
163
+ <tiktoken_version value="0.8.0" />
164
+ <tokenizer_output_type value="i64" />
165
+ <tokenizers_version value="0.19.1" />
166
+ <transformers_version value="4.44.2" />
167
+ <use_max_padding value="False" />
168
+ <use_sentencepiece_backend value="False" />
169
+ <utf8_replace_mode />
170
+ <with_detokenizer value="True" />
171
  </rt_info>
172
  </net>
openvino_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1134182103fd6664946e604e2d12a99a67c5462d03dddee10b2a11d0bc617770
3
- size 425431703
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc164b903ee6af7f28ba1f03f467e8a424a95285d51fb4a35bae105f4c41c1d8
3
+ size 425431683
openvino_model.xml CHANGED
The diff for this file is too large to render. See raw diff
 
openvino_tokenizer.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e21a141fddc45a135d71b33803d54b75a9002988ff7dbbfef4fc230d3f781f7d
3
- size 5069088
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0aa2db156774fbdb7cac27ee38c328b0a31a7a24409c6837887c3ddbb17ce24
3
+ size 5069118
openvino_tokenizer.xml CHANGED
@@ -9,25 +9,25 @@
9
  </port>
10
  </output>
11
  </layer>
12
- <layer id="1" name="Constant_19707" type="Const" version="opset1">
13
  <data element_type="i32" shape="" offset="0" size="4" />
14
  <output>
15
  <port id="0" precision="I32" />
16
  </output>
17
  </layer>
18
- <layer id="2" name="Constant_19703" type="Const" version="opset1">
19
- <data element_type="u8" shape="5069080" offset="4" size="5069080" />
20
  <output>
21
  <port id="0" precision="U8">
22
- <dim>5069080</dim>
23
  </port>
24
  </output>
25
  </layer>
26
- <layer id="3" name="SentencepieceTokenizer_19706" type="SentencepieceTokenizer" version="extension">
27
  <data nbest_size="0" alpha="0" add_bos="true" add_eos="true" reverse="false" />
28
  <input>
29
  <port id="0" precision="U8">
30
- <dim>5069080</dim>
31
  </port>
32
  <port id="1" precision="STRING">
33
  <dim>-1</dim>
@@ -46,7 +46,7 @@
46
  </port>
47
  </output>
48
  </layer>
49
- <layer id="4" name="Broadcast_19708" type="Broadcast" version="opset3">
50
  <data mode="numpy" />
51
  <input>
52
  <port id="0" precision="I32" />
@@ -61,13 +61,13 @@
61
  </port>
62
  </output>
63
  </layer>
64
- <layer id="5" name="Constant_19709" type="Const" version="opset1">
65
- <data element_type="i32" shape="" offset="5069084" size="4" />
66
  <output>
67
  <port id="0" precision="I32" />
68
  </output>
69
  </layer>
70
- <layer id="6" name="ShapeOf_19710" type="ShapeOf" version="opset3">
71
  <data output_type="i64" />
72
  <input>
73
  <port id="0" precision="I32">
@@ -80,7 +80,7 @@
80
  </port>
81
  </output>
82
  </layer>
83
- <layer id="7" name="Broadcast_19711" type="Broadcast" version="opset3">
84
  <data mode="numpy" />
85
  <input>
86
  <port id="0" precision="I32" />
@@ -94,7 +94,7 @@
94
  </port>
95
  </output>
96
  </layer>
97
- <layer id="8" name="ScatterNDUpdate_19715" type="ScatterNDUpdate" version="opset4">
98
  <input>
99
  <port id="0" precision="I32">
100
  <dim>-1</dim>
@@ -115,7 +115,65 @@
115
  </port>
116
  </output>
117
  </layer>
118
- <layer id="9" name="ScatterNDUpdate_19715" type="Convert" version="opset1">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
  <data destination_type="i64" />
120
  <input>
121
  <port id="0" precision="I32">
@@ -130,13 +188,13 @@
130
  </port>
131
  </output>
132
  </layer>
133
- <layer id="11" name="Constant_19716" type="Const" version="opset1">
134
- <data element_type="i32" shape="" offset="5069084" size="4" />
135
  <output>
136
  <port id="0" precision="I32" />
137
  </output>
138
  </layer>
139
- <layer id="12" name="Broadcast_19717" type="Broadcast" version="opset3">
140
  <data mode="bidirectional" />
141
  <input>
142
  <port id="0" precision="I32" />
@@ -151,7 +209,7 @@
151
  </port>
152
  </output>
153
  </layer>
154
- <layer id="13" name="ScatterNDUpdate_19718" type="ScatterNDUpdate" version="opset4">
155
  <input>
156
  <port id="0" precision="I32">
157
  <dim>-1</dim>
@@ -172,7 +230,65 @@
172
  </port>
173
  </output>
174
  </layer>
175
- <layer id="14" name="ScatterNDUpdate_19718" type="Convert" version="opset1">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  <data destination_type="i64" />
177
  <input>
178
  <port id="0" precision="I32">
@@ -187,7 +303,7 @@
187
  </port>
188
  </output>
189
  </layer>
190
- <layer id="15" name="Result_19719" type="Result" version="opset1">
191
  <input>
192
  <port id="0" precision="I64">
193
  <dim>-1</dim>
@@ -195,7 +311,7 @@
195
  </port>
196
  </input>
197
  </layer>
198
- <layer id="10" name="Result_19720" type="Result" version="opset1">
199
  <input>
200
  <port id="0" precision="I64">
201
  <dim>-1</dim>
@@ -208,28 +324,57 @@
208
  <edge from-layer="0" from-port="0" to-layer="3" to-port="1" />
209
  <edge from-layer="1" from-port="0" to-layer="4" to-port="0" />
210
  <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
211
- <edge from-layer="3" from-port="4" to-layer="4" to-port="1" />
212
- <edge from-layer="3" from-port="3" to-layer="6" to-port="0" />
 
213
  <edge from-layer="3" from-port="2" to-layer="8" to-port="1" />
214
- <edge from-layer="3" from-port="3" to-layer="13" to-port="2" />
215
- <edge from-layer="3" from-port="2" to-layer="13" to-port="1" />
216
- <edge from-layer="3" from-port="4" to-layer="12" to-port="1" />
217
  <edge from-layer="4" from-port="2" to-layer="8" to-port="0" />
218
  <edge from-layer="5" from-port="0" to-layer="7" to-port="0" />
219
  <edge from-layer="6" from-port="1" to-layer="7" to-port="1" />
220
  <edge from-layer="7" from-port="2" to-layer="8" to-port="2" />
221
- <edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
222
- <edge from-layer="9" from-port="1" to-layer="10" to-port="0" />
223
- <edge from-layer="11" from-port="0" to-layer="12" to-port="0" />
224
- <edge from-layer="12" from-port="2" to-layer="13" to-port="0" />
225
- <edge from-layer="13" from-port="3" to-layer="14" to-port="0" />
 
226
  <edge from-layer="14" from-port="1" to-layer="15" to-port="0" />
 
 
 
 
 
 
 
 
 
227
  </edges>
228
  <rt_info>
 
 
 
229
  <bos_token_id value="0" />
230
- <chat_template value="{% for message in messages %}{{'&lt;|im_start|>' + message['role'] + '&#10;' + message['content'] + '&lt;|im_end|>' + '&#10;'}}{% endfor %}{% if add_generation_prompt %}{{ '&lt;|im_start|>assistant&#10;' }}{% endif %}" />
 
231
  <eos_token_id value="2" />
 
 
 
 
232
  <original_tokenizer_class value="&lt;class 'transformers.models.xlm_roberta.tokenization_xlm_roberta_fast.XLMRobertaTokenizerFast'>" />
233
  <pad_token_id value="1" />
 
 
 
 
 
 
 
 
 
 
 
234
  </rt_info>
235
  </net>
 
9
  </port>
10
  </output>
11
  </layer>
12
+ <layer id="1" name="Constant_15377" type="Const" version="opset1">
13
  <data element_type="i32" shape="" offset="0" size="4" />
14
  <output>
15
  <port id="0" precision="I32" />
16
  </output>
17
  </layer>
18
+ <layer id="2" name="Constant_15373" type="Const" version="opset1">
19
+ <data element_type="u8" shape="5069078" offset="4" size="5069078" />
20
  <output>
21
  <port id="0" precision="U8">
22
+ <dim>5069078</dim>
23
  </port>
24
  </output>
25
  </layer>
26
+ <layer id="3" name="SentencepieceTokenizer_15376" type="SentencepieceTokenizer" version="extension">
27
  <data nbest_size="0" alpha="0" add_bos="true" add_eos="true" reverse="false" />
28
  <input>
29
  <port id="0" precision="U8">
30
+ <dim>5069078</dim>
31
  </port>
32
  <port id="1" precision="STRING">
33
  <dim>-1</dim>
 
46
  </port>
47
  </output>
48
  </layer>
49
+ <layer id="4" name="Broadcast_15378" type="Broadcast" version="opset3">
50
  <data mode="numpy" />
51
  <input>
52
  <port id="0" precision="I32" />
 
61
  </port>
62
  </output>
63
  </layer>
64
+ <layer id="5" name="Constant_15379" type="Const" version="opset1">
65
+ <data element_type="i32" shape="" offset="5069082" size="4" />
66
  <output>
67
  <port id="0" precision="I32" />
68
  </output>
69
  </layer>
70
+ <layer id="6" name="ShapeOf_15380" type="ShapeOf" version="opset3">
71
  <data output_type="i64" />
72
  <input>
73
  <port id="0" precision="I32">
 
80
  </port>
81
  </output>
82
  </layer>
83
+ <layer id="7" name="Broadcast_15381" type="Broadcast" version="opset3">
84
  <data mode="numpy" />
85
  <input>
86
  <port id="0" precision="I32" />
 
94
  </port>
95
  </output>
96
  </layer>
97
+ <layer id="8" name="ScatterNDUpdate_15384" type="ScatterNDUpdate" version="opset4">
98
  <input>
99
  <port id="0" precision="I32">
100
  <dim>-1</dim>
 
115
  </port>
116
  </output>
117
  </layer>
118
+ <layer id="9" name="Constant_15393" type="Const" version="opset1">
119
+ <data element_type="i64" shape="1" offset="5069086" size="8" />
120
+ <output>
121
+ <port id="0" precision="I64">
122
+ <dim>1</dim>
123
+ </port>
124
+ </output>
125
+ </layer>
126
+ <layer id="10" name="Constant_15394" type="Const" version="opset1">
127
+ <data element_type="i64" shape="1" offset="5069094" size="8" />
128
+ <output>
129
+ <port id="0" precision="I64">
130
+ <dim>1</dim>
131
+ </port>
132
+ </output>
133
+ </layer>
134
+ <layer id="11" name="Constant_15395" type="Const" version="opset1">
135
+ <data element_type="i64" shape="1" offset="5069102" size="8" />
136
+ <output>
137
+ <port id="0" precision="I64">
138
+ <dim>1</dim>
139
+ </port>
140
+ </output>
141
+ </layer>
142
+ <layer id="12" name="Constant_15396" type="Const" version="opset1">
143
+ <data element_type="i64" shape="1" offset="5069110" size="8" />
144
+ <output>
145
+ <port id="0" precision="I64">
146
+ <dim>1</dim>
147
+ </port>
148
+ </output>
149
+ </layer>
150
+ <layer id="13" name="Slice_15397" type="Slice" version="opset8">
151
+ <input>
152
+ <port id="0" precision="I32">
153
+ <dim>-1</dim>
154
+ <dim>-1</dim>
155
+ </port>
156
+ <port id="1" precision="I64">
157
+ <dim>1</dim>
158
+ </port>
159
+ <port id="2" precision="I64">
160
+ <dim>1</dim>
161
+ </port>
162
+ <port id="3" precision="I64">
163
+ <dim>1</dim>
164
+ </port>
165
+ <port id="4" precision="I64">
166
+ <dim>1</dim>
167
+ </port>
168
+ </input>
169
+ <output>
170
+ <port id="5" precision="I32">
171
+ <dim>-1</dim>
172
+ <dim>-1</dim>
173
+ </port>
174
+ </output>
175
+ </layer>
176
+ <layer id="14" name="Slice_15397" type="Convert" version="opset1">
177
  <data destination_type="i64" />
178
  <input>
179
  <port id="0" precision="I32">
 
188
  </port>
189
  </output>
190
  </layer>
191
+ <layer id="16" name="Constant_15385" type="Const" version="opset1">
192
+ <data element_type="i32" shape="" offset="5069082" size="4" />
193
  <output>
194
  <port id="0" precision="I32" />
195
  </output>
196
  </layer>
197
+ <layer id="17" name="Broadcast_15386" type="Broadcast" version="opset3">
198
  <data mode="bidirectional" />
199
  <input>
200
  <port id="0" precision="I32" />
 
209
  </port>
210
  </output>
211
  </layer>
212
+ <layer id="18" name="ScatterNDUpdate_15387" type="ScatterNDUpdate" version="opset4">
213
  <input>
214
  <port id="0" precision="I32">
215
  <dim>-1</dim>
 
230
  </port>
231
  </output>
232
  </layer>
233
+ <layer id="19" name="Constant_15388" type="Const" version="opset1">
234
+ <data element_type="i64" shape="1" offset="5069086" size="8" />
235
+ <output>
236
+ <port id="0" precision="I64">
237
+ <dim>1</dim>
238
+ </port>
239
+ </output>
240
+ </layer>
241
+ <layer id="20" name="Constant_15389" type="Const" version="opset1">
242
+ <data element_type="i64" shape="1" offset="5069094" size="8" />
243
+ <output>
244
+ <port id="0" precision="I64">
245
+ <dim>1</dim>
246
+ </port>
247
+ </output>
248
+ </layer>
249
+ <layer id="21" name="Constant_15390" type="Const" version="opset1">
250
+ <data element_type="i64" shape="1" offset="5069102" size="8" />
251
+ <output>
252
+ <port id="0" precision="I64">
253
+ <dim>1</dim>
254
+ </port>
255
+ </output>
256
+ </layer>
257
+ <layer id="22" name="Constant_15391" type="Const" version="opset1">
258
+ <data element_type="i64" shape="1" offset="5069110" size="8" />
259
+ <output>
260
+ <port id="0" precision="I64">
261
+ <dim>1</dim>
262
+ </port>
263
+ </output>
264
+ </layer>
265
+ <layer id="23" name="Slice_15392" type="Slice" version="opset8">
266
+ <input>
267
+ <port id="0" precision="I32">
268
+ <dim>-1</dim>
269
+ <dim>-1</dim>
270
+ </port>
271
+ <port id="1" precision="I64">
272
+ <dim>1</dim>
273
+ </port>
274
+ <port id="2" precision="I64">
275
+ <dim>1</dim>
276
+ </port>
277
+ <port id="3" precision="I64">
278
+ <dim>1</dim>
279
+ </port>
280
+ <port id="4" precision="I64">
281
+ <dim>1</dim>
282
+ </port>
283
+ </input>
284
+ <output>
285
+ <port id="5" precision="I32">
286
+ <dim>-1</dim>
287
+ <dim>-1</dim>
288
+ </port>
289
+ </output>
290
+ </layer>
291
+ <layer id="24" name="Slice_15392" type="Convert" version="opset1">
292
  <data destination_type="i64" />
293
  <input>
294
  <port id="0" precision="I32">
 
303
  </port>
304
  </output>
305
  </layer>
306
+ <layer id="25" name="Result_15398" type="Result" version="opset1">
307
  <input>
308
  <port id="0" precision="I64">
309
  <dim>-1</dim>
 
311
  </port>
312
  </input>
313
  </layer>
314
+ <layer id="15" name="Result_15399" type="Result" version="opset1">
315
  <input>
316
  <port id="0" precision="I64">
317
  <dim>-1</dim>
 
324
  <edge from-layer="0" from-port="0" to-layer="3" to-port="1" />
325
  <edge from-layer="1" from-port="0" to-layer="4" to-port="0" />
326
  <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
327
+ <edge from-layer="3" from-port="4" to-layer="17" to-port="1" />
328
+ <edge from-layer="3" from-port="2" to-layer="18" to-port="1" />
329
+ <edge from-layer="3" from-port="3" to-layer="18" to-port="2" />
330
  <edge from-layer="3" from-port="2" to-layer="8" to-port="1" />
331
+ <edge from-layer="3" from-port="3" to-layer="6" to-port="0" />
332
+ <edge from-layer="3" from-port="4" to-layer="4" to-port="1" />
 
333
  <edge from-layer="4" from-port="2" to-layer="8" to-port="0" />
334
  <edge from-layer="5" from-port="0" to-layer="7" to-port="0" />
335
  <edge from-layer="6" from-port="1" to-layer="7" to-port="1" />
336
  <edge from-layer="7" from-port="2" to-layer="8" to-port="2" />
337
+ <edge from-layer="8" from-port="3" to-layer="13" to-port="0" />
338
+ <edge from-layer="9" from-port="0" to-layer="13" to-port="1" />
339
+ <edge from-layer="10" from-port="0" to-layer="13" to-port="2" />
340
+ <edge from-layer="11" from-port="0" to-layer="13" to-port="3" />
341
+ <edge from-layer="12" from-port="0" to-layer="13" to-port="4" />
342
+ <edge from-layer="13" from-port="5" to-layer="14" to-port="0" />
343
  <edge from-layer="14" from-port="1" to-layer="15" to-port="0" />
344
+ <edge from-layer="16" from-port="0" to-layer="17" to-port="0" />
345
+ <edge from-layer="17" from-port="2" to-layer="18" to-port="0" />
346
+ <edge from-layer="18" from-port="3" to-layer="23" to-port="0" />
347
+ <edge from-layer="19" from-port="0" to-layer="23" to-port="1" />
348
+ <edge from-layer="20" from-port="0" to-layer="23" to-port="2" />
349
+ <edge from-layer="21" from-port="0" to-layer="23" to-port="3" />
350
+ <edge from-layer="22" from-port="0" to-layer="23" to-port="4" />
351
+ <edge from-layer="23" from-port="5" to-layer="24" to-port="0" />
352
+ <edge from-layer="24" from-port="1" to-layer="25" to-port="0" />
353
  </edges>
354
  <rt_info>
355
+ <add_attention_mask value="True" />
356
+ <add_prefix_space value="True" />
357
+ <add_special_tokens value="True" />
358
  <bos_token_id value="0" />
359
+ <clean_up_tokenization_spaces value="True" />
360
+ <detokenizer_input_type value="i64" />
361
  <eos_token_id value="2" />
362
+ <handle_special_tokens_with_re value="False" />
363
+ <number_of_inputs value="1" />
364
+ <openvino_tokenizers_version value="2024.5.0.0.dev20241101" />
365
+ <openvino_version value="2024.5.0.dev20241101" />
366
  <original_tokenizer_class value="&lt;class 'transformers.models.xlm_roberta.tokenization_xlm_roberta_fast.XLMRobertaTokenizerFast'>" />
367
  <pad_token_id value="1" />
368
+ <sentencepiece_version value="0.2.0" />
369
+ <skip_special_tokens value="True" />
370
+ <streaming_detokenizer value="False" />
371
+ <tiktoken_version value="0.8.0" />
372
+ <tokenizer_output_type value="i64" />
373
+ <tokenizers_version value="0.19.1" />
374
+ <transformers_version value="4.44.2" />
375
+ <use_max_padding value="False" />
376
+ <use_sentencepiece_backend value="False" />
377
+ <utf8_replace_mode />
378
+ <with_detokenizer value="True" />
379
  </rt_info>
380
  </net>