--- tags: - merge - mergekit - lazymergekit - gchhablani/bert-base-cased-finetuned-sst2 - Wakaka/bert-finetuned-imdb base_model: - gchhablani/bert-base-cased-finetuned-sst2 - Wakaka/bert-finetuned-imdb --- # roberta-movie-sentiment-multimodel roberta-movie-sentiment-multimodel is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [gchhablani/bert-base-cased-finetuned-sst2](https://huggingface.co/gchhablani/bert-base-cased-finetuned-sst2) * [Wakaka/bert-finetuned-imdb](https://huggingface.co/Wakaka/bert-finetuned-imdb) ## 🧩 Configuration ```yaml models: - model: gchhablani/bert-base-cased-finetuned-sst2 parameters: weight: 0.5 - model: Wakaka/bert-finetuned-imdb parameters: weight: 0.5 merge_method: linear dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "EmmanuelM1/roberta-movie-sentiment-multimodel" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```