Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1804.90 +/- 269.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2c1edcf7df3996e5a805ab9d859d53dda6160762f0f7ba3f2c211f15f0864f3
|
3 |
+
size 129264
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f16b9b3e8b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f16b9b3e940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f16b9b3e9d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f16b9b3ea60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f16b9b3eaf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f16b9b3eb80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f16b9b3ec10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f16b9b3eca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f16b9b3ed30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f16b9b3edc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f16b9b3ee50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f16b9b3eee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f16b9b43100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679422346150173142,
|
68 |
+
"learning_rate": 0.001,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOOzM0Cyj8i/XdpDPn9hjD/m+tQ+4E+TPxA+QEAJF76/wJ4Kv6zlwD6FGYO/Gr23u1A/3T8s5jC8KTGrPi0qoj/HjNi/4LqbP1kCXz/ul4G+aq2Av16MOT2El8Q/NZFDPzkgeb/boN6/DfbXPoAbWz8bya0/eRwWvzFhLj+Odf+8zt5pP7qeVz+594Y++1wxvr1MpT73LFo/6xEXv83ntb+Ur5m+BMMyQKr7ab/Au0g/WOEQv75a/D+tcwO/tXfcPS3Hf7/cwqk8jVIeQOKz5705IHm/4C8TPw321z6AG1s/v8w5P4oKl79Y0Ps+9AO6P7eU3r8Gwdo/hg8QP9erkL8LpxK/c+QDwOE+oz8evMC/kZGnvwenzD4OhlC/zbdLPwXbX7+deJq/OYhnP5X2Ir4R4nS/6HIiwMAMID8UOYA/OSB5v+AvEz8N9tc+XY2Vv/yW5b6J0Yw/374NvxnQiT8nVQ4/iXxtviwKZT8eDuA+ndO/PjYx6b/SlRQ/NkuOPz3ws7+hsNM9yTckvxs0gL7kmJ6+jbPvv8rFHT/87rw/+HXXP+OXcL+jvE2/saWjPyuIgz/gLxM/DfbXPl2Nlb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADZQsE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAF/rVvQAAAAABv9q/AAAAAJiNsz0AAAAAZ2IAQAAAAABgCrk9AAAAAHFp/j8AAAAAe8LbPAAAAAB7oty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaXvNtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPojijoAAAAAnDXrvwAAAAAWPpS8AAAAAJER5T8AAAAAZJbQPAAAAADdOdk/AAAAAGG/rzwAAAAAg/XmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKVKcTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5+JW9AAAAAAiB/r8AAAAASrdrvQAAAADAgdo/AAAAACz/izwAAAAAwt7zPwAAAABPdQS+AAAAADGB7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCuJA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJQOmPAAAAABn6ee/AAAAACy+/j0AAAAAzpL8PwAAAAChaEO9AAAAAGY28T8AAAAAs50PvgAAAABPGPy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpQ2QtBfKKMAWyUTegDjAF0lEdAunyXdLxqf3V9lChoBkdAnqwQiFCb+mgHTegDaAhHQLp+Ci3G4qh1fZQoaAZHQJ1WcngHeJpoB03oA2gIR0C6frLH2h7FdX2UKGgGR0CfLBI3BHkMaAdN6ANoCEdAun7j24/eL3V9lChoBkdAoGcxQ+EAYGgHTegDaAhHQLqCHjslb/x1fZQoaAZHQJ5IZGAkLQZoB03oA2gIR0C6g65cLSeAdX2UKGgGR0Cf9q7u2JBPaAdN6ANoCEdAuoRXG+9Jz3V9lChoBkdAnpycUypJgGgHTegDaAhHQLqEiVPepGZ1fZQoaAZHQJ9ytmyxA0NoB03oA2gIR0C6iRJVfeDWdX2UKGgGR0CcDOeqJdjYaAdN6ANoCEdAuosDUsnRcHV9lChoBkdAnO01+qioKmgHTegDaAhHQLqLpme18b91fZQoaAZHQJov4fZElVtoB03oA2gIR0C6i9Xq/ub7dX2UKGgGR0CfEPznzQNTaAdN6ANoCEdAuo8hdOZb6nV9lChoBkdAoLc/K8tf5WgHTegDaAhHQLqQnHD76551fZQoaAZHQKB/7yH2ys1oB03oA2gIR0C6kUmlhw2mdX2UKGgGR0CRHOOXmeUZaAdN6ANoCEdAupGAqAjIJnV9lChoBkdAnpni3XqZ+mgHTegDaAhHQLqU9uxKQJZ1fZQoaAZHQI390ir1dxBoB03oA2gIR0C6lyIRdyDJdX2UKGgGR0Cb4zyqdYnwaAdN6ANoCEdAupgozVMEinV9lChoBkdAnSg2thd+omgHTegDaAhHQLqYdQZGax51fZQoaAZHQJyiUIjW07doB03oA2gIR0C6nBvnB+F2dX2UKGgGR0Cd9Z8gIQe4aAdN6ANoCEdAup2O28Zk1HV9lChoBkdAntFmp2ll9WgHTegDaAhHQLqeNW5H3Dh1fZQoaAZHQJ39Z+1Bt1poB03oA2gIR0C6nmTCP6sRdX2UKGgGR0CflUcMmWt2aAdN6ANoCEdAuqGI6zVtoHV9lChoBkdAnPOcJY1YQ2gHTegDaAhHQLqi+LowEhd1fZQoaAZHQKCBnkkKNQ1oB03oA2gIR0C6o57C79Q5dX2UKGgGR0Cgf/Zid8RdaAdN6ANoCEdAuqPkyeqaPXV9lChoBkdAnttEu+RHPWgHTegDaAhHQLqotnJkoWp1fZQoaAZHQIqHh3HJcPhoB03oA2gIR0C6qiw5aNdadX2UKGgGR0CLDG/xlQMyaAdN6ANoCEdAuqrOMERranV9lChoBkdAm9yHbdrO7mgHTegDaAhHQLqq/rwOOKh1fZQoaAZHQJvS0sH0K7ZoB03oA2gIR0C6riF9F4LUdX2UKGgGR0CbAm/wy6+WaAdN6ANoCEdAuq+TdAPd23V9lChoBkdAmlzcIiTt9mgHTegDaAhHQLqwOi704BF1fZQoaAZHQJktGYx+KCRoB03oA2gIR0C6sGlWS2YwdX2UKGgGR0CVKC6U7jkuaAdN6ANoCEdAurP1oEjgRHV9lChoBkdAmjtuktVaOmgHTegDaAhHQLq2I5xR2r51fZQoaAZHQJxiBHLA57xoB03oA2gIR0C6tx6ODJ2ddX2UKGgGR0Cb9e4bjtG/aAdN6ANoCEdAurdl1ie/YnV9lChoBkdAmsEUeuFHrmgHTegDaAhHQLq6rEBKcut1fZQoaAZHQJ26gXpGFzxoB03oA2gIR0C6vCMU7CBPdX2UKGgGR0Cc/TJN0vGqaAdN6ANoCEdAurzIdcSoO3V9lChoBkdAnXVsB6rvLGgHTegDaAhHQLq8+B0ZFXt1fZQoaAZHQJ0W1sxfv4NoB03oA2gIR0C6wDopH7P6dX2UKGgGR0CeJFh4t6HCaAdN6ANoCEdAusG3+5vtMXV9lChoBkdAnks6yv9tM2gHTegDaAhHQLrCtEpy6tl1fZQoaAZHQJ1RJKraM75oB03oA2gIR0C6wvyliz9kdX2UKGgGR0Cew7WXTmW/aAdN6ANoCEdAuseEDW9UTHV9lChoBkdAngqvQSi/PGgHTegDaAhHQLrI9o60Y0l1fZQoaAZHQJwURuIhyKhoB03oA2gIR0C6yZiVbA1vdX2UKGgGR0CegxZCOWB0aAdN6ANoCEdAusnHJZGKAXV9lChoBkdAnJRvhESdv2gHTegDaAhHQLrM9glWwNd1fZQoaAZHQJpt/t+kP+ZoB03oA2gIR0C6znVzuF6BdX2UKGgGR0CeFXkz41xbaAdN6ANoCEdAus8h0uDjBHV9lChoBkdAnY/Irz5GjWgHTegDaAhHQLrPUAQg9vF1fZQoaAZHQJ642k1uR9xoB03oA2gIR0C60yCDEm6YdX2UKGgGR0Cf0IiDM/yHaAdN6ANoCEdAutWFkK/mDHV9lChoBkdAnsfHf642CWgHTegDaAhHQLrWaz3AVO91fZQoaAZHQJ+ixciW3SdoB03oA2gIR0C61ppKvmozdX2UKGgGR0CfVvFCswL3aAdN6ANoCEdAutnjek56t3V9lChoBkdAoFfyCWeHz2gHTegDaAhHQLrbbEs8PnV1fZQoaAZHQJuHt5yEL6VoB03oA2gIR0C63BdedCmedX2UKGgGR0CceQzOX3QEaAdN6ANoCEdAutxI2ZRbbHV9lChoBkdAmHe6htcfNmgHTegDaAhHQLrfeSHM2WJ1fZQoaAZHQJpQicTakARoB03oA2gIR0C64Uo/qxC6dX2UKGgGR0CeWVb/wRXfaAdN6ANoCEdAuuI+mXPZ7HV9lChoBkdAnln45o4+82gHTegDaAhHQLrihzQNTcZ1fZQoaAZHQJ849d5Y5ktoB03oA2gIR0C65rc63iJgdX2UKGgGR0CbZJxffGdaaAdN6ANoCEdAuuhJm+TNdXV9lChoBkdAmCXth3JPqWgHTegDaAhHQLro8BkZrHl1fZQoaAZHQJ34qi9IwudoB03oA2gIR0C66R4jKPn0dX2UKGgGR0CZD/yM1jy4aAdN6ANoCEdAuuxRcu8K5XV9lChoBkdAlpBK2OQyRGgHTegDaAhHQLrtzfWcz691fZQoaAZHQJqqHeJpFkRoB03oA2gIR0C67m/eYUnHdX2UKGgGR0Cb/G+3H7xeaAdN6ANoCEdAuu6eeSSvDHV9lChoBkdAf81mNBF/hGgHTdYBaAhHQLrw2PE87p51fZQoaAZHQJi4hkGzKLdoB03oA2gIR0C68xMFEAo5dX2UKGgGR0CbnkAFgUlBaAdN6ANoCEdAuvW3889wFXV9lChoBkdAl5vUCFK02WgHTegDaAhHQLr15rcj7hx1fZQoaAZHQJbapX7tReloB03oA2gIR0C696LIo3JgdX2UKGgGR0CYCdnqVyFPaAdN6ANoCEdAuvkadhAnlXV9lChoBkdAlQNwvDgqE2gHTegDaAhHQLr7RSLqD9R1fZQoaAZHQJjmDtu1ndxoB03oA2gIR0C6+3bxEv0zdX2UKGgGR0CdWsDjin50aAdN6ANoCEdAuv02N1hb4nV9lChoBkdAmacDQZ4wAWgHTegDaAhHQLr+r12JSBN1fZQoaAZHQJWZ+9+PRzBoB03oA2gIR0C7AeZvDP4VdX2UKGgGR0Ca7bdSl3yJaAdN6ANoCEdAuwIxJI1+AnV9lChoBkdAm9IUtZmqYWgHTegDaAhHQLsEdY77sOZ1fZQoaAZHQJWXMUQCjlBoB03oA2gIR0C7BeRBVuJldX2UKGgGR0CYdRx0MgEEaAdN6ANoCEdAuwgYzl90BHV9lChoBkdAlduMfRu0kWgHTegDaAhHQLsIS+10DEF1fZQoaAZHQJnmvYwqRU5oB03oA2gIR0C7ChDO9nK5dX2UKGgGR0CX+u43m3fAaAdN6ANoCEdAuwuDQZ4wAXV9lChoBkdAl2mbNKRMe2gHTegDaAhHQLsNonEETxp1fZQoaAZHQJivTiCJ40NoB03oA2gIR0C7DebnDBM0dX2UKGgGR0CcJECFsYVJaAdN6ANoCEdAuxB4rMC9y3V9lChoBkdAmr3q8Hv+fmgHTegDaAhHQLsSt2ys0YV1fZQoaAZHQKBPvDWsijdoB03oA2gIR0C7FNhXr+o+dX2UKGgGR0CgiZ7WmP5paAdN6ANoCEdAuxUKCkGiYnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 25000,
|
99 |
+
"n_steps": 20,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.7,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:335cc6dd1926d1d44b0e27146c09d494411596ad8890fc098ca278a497ea054a
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31e4294332612a656dc2412afe181ac94d7e154794011943118be159d6ea5396
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f16b9b3e8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f16b9b3e940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f16b9b3e9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f16b9b3ea60>", "_build": "<function ActorCriticPolicy._build at 0x7f16b9b3eaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f16b9b3eb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f16b9b3ec10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f16b9b3eca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f16b9b3ed30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f16b9b3edc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f16b9b3ee50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f16b9b3eee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f16b9b43100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679422346150173142, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOOzM0Cyj8i/XdpDPn9hjD/m+tQ+4E+TPxA+QEAJF76/wJ4Kv6zlwD6FGYO/Gr23u1A/3T8s5jC8KTGrPi0qoj/HjNi/4LqbP1kCXz/ul4G+aq2Av16MOT2El8Q/NZFDPzkgeb/boN6/DfbXPoAbWz8bya0/eRwWvzFhLj+Odf+8zt5pP7qeVz+594Y++1wxvr1MpT73LFo/6xEXv83ntb+Ur5m+BMMyQKr7ab/Au0g/WOEQv75a/D+tcwO/tXfcPS3Hf7/cwqk8jVIeQOKz5705IHm/4C8TPw321z6AG1s/v8w5P4oKl79Y0Ps+9AO6P7eU3r8Gwdo/hg8QP9erkL8LpxK/c+QDwOE+oz8evMC/kZGnvwenzD4OhlC/zbdLPwXbX7+deJq/OYhnP5X2Ir4R4nS/6HIiwMAMID8UOYA/OSB5v+AvEz8N9tc+XY2Vv/yW5b6J0Yw/374NvxnQiT8nVQ4/iXxtviwKZT8eDuA+ndO/PjYx6b/SlRQ/NkuOPz3ws7+hsNM9yTckvxs0gL7kmJ6+jbPvv8rFHT/87rw/+HXXP+OXcL+jvE2/saWjPyuIgz/gLxM/DfbXPl2Nlb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADZQsE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAF/rVvQAAAAABv9q/AAAAAJiNsz0AAAAAZ2IAQAAAAABgCrk9AAAAAHFp/j8AAAAAe8LbPAAAAAB7oty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaXvNtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPojijoAAAAAnDXrvwAAAAAWPpS8AAAAAJER5T8AAAAAZJbQPAAAAADdOdk/AAAAAGG/rzwAAAAAg/XmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKVKcTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5+JW9AAAAAAiB/r8AAAAASrdrvQAAAADAgdo/AAAAACz/izwAAAAAwt7zPwAAAABPdQS+AAAAADGB7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCuJA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJQOmPAAAAABn6ee/AAAAACy+/j0AAAAAzpL8PwAAAAChaEO9AAAAAGY28T8AAAAAs50PvgAAAABPGPy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpQ2QtBfKKMAWyUTegDjAF0lEdAunyXdLxqf3V9lChoBkdAnqwQiFCb+mgHTegDaAhHQLp+Ci3G4qh1fZQoaAZHQJ1WcngHeJpoB03oA2gIR0C6frLH2h7FdX2UKGgGR0CfLBI3BHkMaAdN6ANoCEdAun7j24/eL3V9lChoBkdAoGcxQ+EAYGgHTegDaAhHQLqCHjslb/x1fZQoaAZHQJ5IZGAkLQZoB03oA2gIR0C6g65cLSeAdX2UKGgGR0Cf9q7u2JBPaAdN6ANoCEdAuoRXG+9Jz3V9lChoBkdAnpycUypJgGgHTegDaAhHQLqEiVPepGZ1fZQoaAZHQJ9ytmyxA0NoB03oA2gIR0C6iRJVfeDWdX2UKGgGR0CcDOeqJdjYaAdN6ANoCEdAuosDUsnRcHV9lChoBkdAnO01+qioKmgHTegDaAhHQLqLpme18b91fZQoaAZHQJov4fZElVtoB03oA2gIR0C6i9Xq/ub7dX2UKGgGR0CfEPznzQNTaAdN6ANoCEdAuo8hdOZb6nV9lChoBkdAoLc/K8tf5WgHTegDaAhHQLqQnHD76551fZQoaAZHQKB/7yH2ys1oB03oA2gIR0C6kUmlhw2mdX2UKGgGR0CRHOOXmeUZaAdN6ANoCEdAupGAqAjIJnV9lChoBkdAnpni3XqZ+mgHTegDaAhHQLqU9uxKQJZ1fZQoaAZHQI390ir1dxBoB03oA2gIR0C6lyIRdyDJdX2UKGgGR0Cb4zyqdYnwaAdN6ANoCEdAupgozVMEinV9lChoBkdAnSg2thd+omgHTegDaAhHQLqYdQZGax51fZQoaAZHQJyiUIjW07doB03oA2gIR0C6nBvnB+F2dX2UKGgGR0Cd9Z8gIQe4aAdN6ANoCEdAup2O28Zk1HV9lChoBkdAntFmp2ll9WgHTegDaAhHQLqeNW5H3Dh1fZQoaAZHQJ39Z+1Bt1poB03oA2gIR0C6nmTCP6sRdX2UKGgGR0CflUcMmWt2aAdN6ANoCEdAuqGI6zVtoHV9lChoBkdAnPOcJY1YQ2gHTegDaAhHQLqi+LowEhd1fZQoaAZHQKCBnkkKNQ1oB03oA2gIR0C6o57C79Q5dX2UKGgGR0Cgf/Zid8RdaAdN6ANoCEdAuqPkyeqaPXV9lChoBkdAnttEu+RHPWgHTegDaAhHQLqotnJkoWp1fZQoaAZHQIqHh3HJcPhoB03oA2gIR0C6qiw5aNdadX2UKGgGR0CLDG/xlQMyaAdN6ANoCEdAuqrOMERranV9lChoBkdAm9yHbdrO7mgHTegDaAhHQLqq/rwOOKh1fZQoaAZHQJvS0sH0K7ZoB03oA2gIR0C6riF9F4LUdX2UKGgGR0CbAm/wy6+WaAdN6ANoCEdAuq+TdAPd23V9lChoBkdAmlzcIiTt9mgHTegDaAhHQLqwOi704BF1fZQoaAZHQJktGYx+KCRoB03oA2gIR0C6sGlWS2YwdX2UKGgGR0CVKC6U7jkuaAdN6ANoCEdAurP1oEjgRHV9lChoBkdAmjtuktVaOmgHTegDaAhHQLq2I5xR2r51fZQoaAZHQJxiBHLA57xoB03oA2gIR0C6tx6ODJ2ddX2UKGgGR0Cb9e4bjtG/aAdN6ANoCEdAurdl1ie/YnV9lChoBkdAmsEUeuFHrmgHTegDaAhHQLq6rEBKcut1fZQoaAZHQJ26gXpGFzxoB03oA2gIR0C6vCMU7CBPdX2UKGgGR0Cc/TJN0vGqaAdN6ANoCEdAurzIdcSoO3V9lChoBkdAnXVsB6rvLGgHTegDaAhHQLq8+B0ZFXt1fZQoaAZHQJ0W1sxfv4NoB03oA2gIR0C6wDopH7P6dX2UKGgGR0CeJFh4t6HCaAdN6ANoCEdAusG3+5vtMXV9lChoBkdAnks6yv9tM2gHTegDaAhHQLrCtEpy6tl1fZQoaAZHQJ1RJKraM75oB03oA2gIR0C6wvyliz9kdX2UKGgGR0Cew7WXTmW/aAdN6ANoCEdAuseEDW9UTHV9lChoBkdAngqvQSi/PGgHTegDaAhHQLrI9o60Y0l1fZQoaAZHQJwURuIhyKhoB03oA2gIR0C6yZiVbA1vdX2UKGgGR0CegxZCOWB0aAdN6ANoCEdAusnHJZGKAXV9lChoBkdAnJRvhESdv2gHTegDaAhHQLrM9glWwNd1fZQoaAZHQJpt/t+kP+ZoB03oA2gIR0C6znVzuF6BdX2UKGgGR0CeFXkz41xbaAdN6ANoCEdAus8h0uDjBHV9lChoBkdAnY/Irz5GjWgHTegDaAhHQLrPUAQg9vF1fZQoaAZHQJ642k1uR9xoB03oA2gIR0C60yCDEm6YdX2UKGgGR0Cf0IiDM/yHaAdN6ANoCEdAutWFkK/mDHV9lChoBkdAnsfHf642CWgHTegDaAhHQLrWaz3AVO91fZQoaAZHQJ+ixciW3SdoB03oA2gIR0C61ppKvmozdX2UKGgGR0CfVvFCswL3aAdN6ANoCEdAutnjek56t3V9lChoBkdAoFfyCWeHz2gHTegDaAhHQLrbbEs8PnV1fZQoaAZHQJuHt5yEL6VoB03oA2gIR0C63BdedCmedX2UKGgGR0CceQzOX3QEaAdN6ANoCEdAutxI2ZRbbHV9lChoBkdAmHe6htcfNmgHTegDaAhHQLrfeSHM2WJ1fZQoaAZHQJpQicTakARoB03oA2gIR0C64Uo/qxC6dX2UKGgGR0CeWVb/wRXfaAdN6ANoCEdAuuI+mXPZ7HV9lChoBkdAnln45o4+82gHTegDaAhHQLrihzQNTcZ1fZQoaAZHQJ849d5Y5ktoB03oA2gIR0C65rc63iJgdX2UKGgGR0CbZJxffGdaaAdN6ANoCEdAuuhJm+TNdXV9lChoBkdAmCXth3JPqWgHTegDaAhHQLro8BkZrHl1fZQoaAZHQJ34qi9IwudoB03oA2gIR0C66R4jKPn0dX2UKGgGR0CZD/yM1jy4aAdN6ANoCEdAuuxRcu8K5XV9lChoBkdAlpBK2OQyRGgHTegDaAhHQLrtzfWcz691fZQoaAZHQJqqHeJpFkRoB03oA2gIR0C67m/eYUnHdX2UKGgGR0Cb/G+3H7xeaAdN6ANoCEdAuu6eeSSvDHV9lChoBkdAf81mNBF/hGgHTdYBaAhHQLrw2PE87p51fZQoaAZHQJi4hkGzKLdoB03oA2gIR0C68xMFEAo5dX2UKGgGR0CbnkAFgUlBaAdN6ANoCEdAuvW3889wFXV9lChoBkdAl5vUCFK02WgHTegDaAhHQLr15rcj7hx1fZQoaAZHQJbapX7tReloB03oA2gIR0C696LIo3JgdX2UKGgGR0CYCdnqVyFPaAdN6ANoCEdAuvkadhAnlXV9lChoBkdAlQNwvDgqE2gHTegDaAhHQLr7RSLqD9R1fZQoaAZHQJjmDtu1ndxoB03oA2gIR0C6+3bxEv0zdX2UKGgGR0CdWsDjin50aAdN6ANoCEdAuv02N1hb4nV9lChoBkdAmacDQZ4wAWgHTegDaAhHQLr+r12JSBN1fZQoaAZHQJWZ+9+PRzBoB03oA2gIR0C7AeZvDP4VdX2UKGgGR0Ca7bdSl3yJaAdN6ANoCEdAuwIxJI1+AnV9lChoBkdAm9IUtZmqYWgHTegDaAhHQLsEdY77sOZ1fZQoaAZHQJWXMUQCjlBoB03oA2gIR0C7BeRBVuJldX2UKGgGR0CYdRx0MgEEaAdN6ANoCEdAuwgYzl90BHV9lChoBkdAlduMfRu0kWgHTegDaAhHQLsIS+10DEF1fZQoaAZHQJnmvYwqRU5oB03oA2gIR0C7ChDO9nK5dX2UKGgGR0CX+u43m3fAaAdN6ANoCEdAuwuDQZ4wAXV9lChoBkdAl2mbNKRMe2gHTegDaAhHQLsNonEETxp1fZQoaAZHQJivTiCJ40NoB03oA2gIR0C7DebnDBM0dX2UKGgGR0CcJECFsYVJaAdN6ANoCEdAuxB4rMC9y3V9lChoBkdAmr3q8Hv+fmgHTegDaAhHQLsSt2ys0YV1fZQoaAZHQKBPvDWsijdoB03oA2gIR0C7FNhXr+o+dX2UKGgGR0CgiZ7WmP5paAdN6ANoCEdAuxUKCkGiYnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 20, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.7, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f66f42ab3cc1e1de58abcbc7e47cb1d0523a8f387835b03600396d797127d201
|
3 |
+
size 1243187
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1804.9003054524626, "std_reward": 269.50855292291465, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T19:06:27.630476"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:980ac7fba9ddf013dcae7f2fd00088d670510975e1ec11af3dc9fdb0e3a4bae2
|
3 |
+
size 2136
|