File size: 4,311 Bytes
9c260f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2-1.5B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fine_tuned_eli5_callback10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_eli5_callback10

This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1230
- Accuracy: 0.9747

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.7967        | 0.0210 | 100  | 0.3296          | 0.8710   |
| 0.5957        | 0.0421 | 200  | 0.5430          | 0.8329   |
| 0.386         | 0.0631 | 300  | 0.6117          | 0.8694   |
| 0.3981        | 0.0841 | 400  | 0.3349          | 0.9129   |
| 0.3357        | 0.1052 | 500  | 0.2388          | 0.9117   |
| 0.2831        | 0.1262 | 600  | 0.4056          | 0.9063   |
| 0.4625        | 0.1472 | 700  | 0.2346          | 0.9058   |
| 0.3478        | 0.1683 | 800  | 0.1944          | 0.9259   |
| 0.2524        | 0.1893 | 900  | 0.3200          | 0.9203   |
| 0.3523        | 0.2103 | 1000 | 0.3342          | 0.9113   |
| 0.2756        | 0.2314 | 1100 | 0.2443          | 0.9423   |
| 0.2814        | 0.2524 | 1200 | 0.2346          | 0.9349   |
| 0.2636        | 0.2735 | 1300 | 0.5285          | 0.9018   |
| 0.2491        | 0.2945 | 1400 | 0.1802          | 0.9472   |
| 0.2328        | 0.3155 | 1500 | 0.2347          | 0.9468   |
| 0.2113        | 0.3366 | 1600 | 0.2146          | 0.9453   |
| 0.2342        | 0.3576 | 1700 | 0.2253          | 0.9406   |
| 0.2102        | 0.3786 | 1800 | 0.1987          | 0.9515   |
| 0.1518        | 0.3997 | 1900 | 0.2878          | 0.9373   |
| 0.2326        | 0.4207 | 2000 | 0.2071          | 0.9489   |
| 0.2018        | 0.4417 | 2100 | 0.1554          | 0.9498   |
| 0.1924        | 0.4628 | 2200 | 0.1812          | 0.9515   |
| 0.2139        | 0.4838 | 2300 | 0.3613          | 0.9302   |
| 0.2801        | 0.5048 | 2400 | 0.1490          | 0.9527   |
| 0.1979        | 0.5259 | 2500 | 0.1786          | 0.9546   |
| 0.1695        | 0.5469 | 2600 | 0.1765          | 0.9536   |
| 0.1541        | 0.5679 | 2700 | 0.1390          | 0.9631   |
| 0.1527        | 0.5890 | 2800 | 0.1198          | 0.9598   |
| 0.1711        | 0.6100 | 2900 | 0.1841          | 0.9593   |
| 0.2014        | 0.6310 | 3000 | 0.1497          | 0.9621   |
| 0.1174        | 0.6521 | 3100 | 0.1464          | 0.9671   |
| 0.1452        | 0.6731 | 3200 | 0.1323          | 0.9652   |
| 0.1367        | 0.6942 | 3300 | 0.1316          | 0.9659   |
| 0.1798        | 0.7152 | 3400 | 0.2200          | 0.9553   |
| 0.1683        | 0.7362 | 3500 | 0.1399          | 0.9655   |
| 0.1426        | 0.7573 | 3600 | 0.1146          | 0.9726   |
| 0.203         | 0.7783 | 3700 | 0.1601          | 0.9666   |
| 0.1452        | 0.7993 | 3800 | 0.1491          | 0.9692   |
| 0.1602        | 0.8204 | 3900 | 0.1251          | 0.9740   |
| 0.1451        | 0.8414 | 4000 | 0.1192          | 0.9747   |
| 0.14          | 0.8624 | 4100 | 0.1441          | 0.9695   |
| 0.158         | 0.8835 | 4200 | 0.1428          | 0.9692   |
| 0.1211        | 0.9045 | 4300 | 0.1841          | 0.9619   |
| 0.1324        | 0.9255 | 4400 | 0.1587          | 0.9657   |
| 0.1153        | 0.9466 | 4500 | 0.1411          | 0.9697   |
| 0.1321        | 0.9676 | 4600 | 0.1230          | 0.9747   |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0