File size: 5,637 Bytes
e082a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# %% Importing the dependencies we need
import numpy as np
import torch
from sklearn.datasets import fetch_20newsgroups
from sklearn.metrics import (accuracy_score, f1_score, confusion_matrix,
ConfusionMatrixDisplay, classification_report)
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from skops import card, hub_utils
from skorch import NeuralNetClassifier
from skorch.callbacks import LRScheduler, ProgressBar
from skorch.hf import HuggingfacePretrainedTokenizer
from torch import nn
from torch.optim.lr_scheduler import LambdaLR
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
# for model hosting and requirements
from pathlib import Path
import transformers
import skorch
import sklearn
import torch
# %%
# Choose a tokenizer and BERT model that work together
TOKENIZER = "distilbert-base-uncased"
PRETRAINED_MODEL = "distilbert-base-uncased"
# model hyper-parameters
OPTMIZER = torch.optim.AdamW
LR = 5e-5
MAX_EPOCHS = 3
CRITERION = nn.CrossEntropyLoss
BATCH_SIZE = 8
# device
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# %% Load the dataset, define features & labels and split
dataset = fetch_20newsgroups()
print(dataset.DESCR.split('Usage')[0])
dataset.target_names
X = dataset.data
y = dataset.target
X_train, X_test, y_train, y_test, = train_test_split(X, y, stratify=y, random_state=0)
num_training_steps = MAX_EPOCHS * (len(X_train) // BATCH_SIZE + 1)
# %%
# Defining learning rate scheduler & BERT in nn.Module
def lr_schedule(current_step):
factor = float(num_training_steps - current_step) / float(max(1, num_training_steps))
assert factor > 0
return factor
class BertModule(nn.Module):
def __init__(self, name, num_labels):
super().__init__()
self.name = name
self.num_labels = num_labels
self.reset_weights()
def reset_weights(self):
self.bert = AutoModelForSequenceClassification.from_pretrained(
self.name, num_labels=self.num_labels
)
def forward(self, **kwargs):
pred = self.bert(**kwargs)
return pred.logits
# %% Chaining tokenizer and BERT in one pipeline
pipeline = Pipeline([
('tokenizer', HuggingfacePretrainedTokenizer(TOKENIZER)),
('net', NeuralNetClassifier(
BertModule,
module__name=PRETRAINED_MODEL,
module__num_labels=len(set(y_train)),
optimizer=OPTMIZER,
lr=LR,
max_epochs=MAX_EPOCHS,
criterion=CRITERION,
batch_size=BATCH_SIZE,
iterator_train__shuffle=True,
device=DEVICE,
callbacks=[
LRScheduler(LambdaLR, lr_lambda=lr_schedule, step_every='batch'),
ProgressBar(),
],
)),
])
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.cuda.manual_seed_all(0)
np.random.seed(0)
# %% Training
%time pipeline.fit(X_train, y_train)
# %% Evaluate the model
%%time
with torch.inference_mode():
y_pred = pipeline.predict(X_test)
accuracy_score(y_test, y_pred)
# %% Save the model
import pickle
with open("model.pkl", mode="bw") as f:
pickle.dump(pipeline, file=f)
# %% Initialize the repository for Hub
local_repo = "model_repo"
hub_utils.init(
model="model.pkl",
requirements=[f"scikit-learn={sklearn.__version__}", f"transformers={transformers.__version__}",
f"torch={torch.__version__}", f"skorch={skorch.__version__}"],
dst=local_repo,
task="text-classification",
data=X_test,
)
# %% Create model card
model_card = card.Card(pipeline, metadata=card.metadata_from_config(Path("model_repo")))
# %% We will add information related to model
model_description = (
"This is a neural net classifier and distilbert model chained with sklearn Pipeline trained on 20 news groups dataset."
)
limitations = "This model is trained for a tutorial and is not ready to be used in production."
model_card.add(
model_description=model_description,
limitations=limitations
)
# %% We can add plots, evaluation results and more!
eval_descr = (
"The model is evaluated on validation data from 20 news group's test split,"
" using accuracy and F1-score with micro average."
)
model_card.add(eval_method=eval_descr)
accuracy = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred, average="micro")
model_card.add_metrics(**{"accuracy": accuracy, "f1 score": f1})
cm = confusion_matrix(y_test, y_pred, labels=pipeline.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=pipeline.classes_)
disp.plot()
disp.figure_.savefig(Path(local_repo) / "confusion_matrix.png")
model_card.add_plot(**{"Confusion matrix": "confusion_matrix.png"})
clf_report = classification_report(
y_test, y_pred, output_dict=True, target_names=dataset.target_names
)
# %% We can add classification report as a table
# We first need to convert classification report to DataFrame to add it as a table
import pandas as pd
del clf_report["accuracy"]
clf_report = pd.DataFrame(clf_report).T.reset_index()
model_card.add_table(
folded=True,
**{
"Classification Report": clf_report,
},
)
# %% We will save our model card
model_card.save(Path(local_repo) / "README.md")
# %% We will add the training script to our repository
hub_utils.add_files(__file__, dst=local_repo)
# %% Push to Hub! This requires us to authenticate ourselves first.
from huggingface_hub import notebook_login
notebook_login()
hub_utils.push(
repo_id="scikit-learn/skorch-text-classification",
source=local_repo,
create_remote=True,
) |