Update README.md
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ metrics:
|
|
5 |
---
|
6 |
# BERT Text Classification Model
|
7 |
|
8 |
-
This is a simple
|
9 |
|
10 |
## Usage
|
11 |
|
@@ -16,4 +16,22 @@ text = "This is a positive review."
|
|
16 |
predicted_class = classify_text(text)
|
17 |
print("Predicted class:", predicted_class)
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
# BERT Text Classification Model
|
7 |
|
8 |
+
This is a simple model for text classification using BERT.
|
9 |
|
10 |
## Usage
|
11 |
|
|
|
16 |
predicted_class = classify_text(text)
|
17 |
print("Predicted class:", predicted_class)
|
18 |
|
19 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
20 |
+
|
21 |
+
# Load pre-trained BERT tokenizer and model
|
22 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
23 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
|
24 |
+
|
25 |
+
# Define a function to classify text
|
26 |
+
def classify_text(text):
|
27 |
+
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True)
|
28 |
+
outputs = model(**inputs)
|
29 |
+
logits = outputs.logits
|
30 |
+
probabilities = logits.softmax(dim=1)
|
31 |
+
predicted_class = probabilities.argmax(dim=1).item()
|
32 |
+
return predicted_class
|
33 |
+
|
34 |
+
# Example usage
|
35 |
+
text = "This is a positive review."
|
36 |
+
predicted_class = classify_text(text)
|
37 |
+
print("Predicted class:", predicted_class)
|