Create README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,57 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
pipeline_tag: text-classification
|
4 |
---
|
5 |
+
# Nexus Bank Loan Default Prediction Model
|
6 |
+
|
7 |
+
This is a machine learning model to predict loan defaulters for Nexus Bank.
|
8 |
+
|
9 |
+
## Usage
|
10 |
+
|
11 |
+
To use the model, you can input the salary and number of dependents of a customer, and it will predict whether they are likely to default on their loan.
|
12 |
+
|
13 |
+
## Dependencies
|
14 |
+
|
15 |
+
- pandas
|
16 |
+
- numpy
|
17 |
+
- seaborn
|
18 |
+
- matplotlib
|
19 |
+
- scikit-learn
|
20 |
+
- gradio
|
21 |
+
|
22 |
+
## Data Source
|
23 |
+
|
24 |
+
The data used for training this model was obtained from Nexus Bank.
|
25 |
+
|
26 |
+
import pandas as pd
|
27 |
+
import numpy as np
|
28 |
+
import seaborn as sns
|
29 |
+
import matplotlib.pyplot as plt
|
30 |
+
%matplotlib inline
|
31 |
+
nexus_bank = pd.read_csv('nexus_bank_dataa.csv')
|
32 |
+
nexus_bank.head()
|
33 |
+
from sklearn.model_selection import train_test_split
|
34 |
+
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.15, random_state=90)
|
35 |
+
from sklearn.neighbors import KNeighborsClassifier
|
36 |
+
knn_classifier =KNeighborsClassifier()
|
37 |
+
knn_classifier.fit(X_train,y_train)
|
38 |
+
knn_predict = knn_classifier.predict(X_test)
|
39 |
+
knn_predict
|
40 |
+
import gradio as gr
|
41 |
+
|
42 |
+
# Prediction function
|
43 |
+
def predict_defaulter(salary, dependents):
|
44 |
+
input_data = [[salary, dependents]]
|
45 |
+
knn_predict = knn_classifier.predict(input_data)
|
46 |
+
return "Yes! its Defaulter" if knn_predict[0] == 1 else "No! its not Defaulter"
|
47 |
+
|
48 |
+
# Interface
|
49 |
+
interface = gr.Interface(
|
50 |
+
fn=predict_defaulter,
|
51 |
+
inputs=["number", "number"],
|
52 |
+
outputs="text",
|
53 |
+
title="Defaulter Prediction"
|
54 |
+
)
|
55 |
+
|
56 |
+
# Launch the interface
|
57 |
+
interface.launch()
|