EngrSamad commited on
Commit
82a331b
·
verified ·
1 Parent(s): c8b5637

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md CHANGED
@@ -1,3 +1,57 @@
1
  ---
2
  license: mit
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ pipeline_tag: text-classification
4
  ---
5
+ # Nexus Bank Loan Default Prediction Model
6
+
7
+ This is a machine learning model to predict loan defaulters for Nexus Bank.
8
+
9
+ ## Usage
10
+
11
+ To use the model, you can input the salary and number of dependents of a customer, and it will predict whether they are likely to default on their loan.
12
+
13
+ ## Dependencies
14
+
15
+ - pandas
16
+ - numpy
17
+ - seaborn
18
+ - matplotlib
19
+ - scikit-learn
20
+ - gradio
21
+
22
+ ## Data Source
23
+
24
+ The data used for training this model was obtained from Nexus Bank.
25
+
26
+ import pandas as pd
27
+ import numpy as np
28
+ import seaborn as sns
29
+ import matplotlib.pyplot as plt
30
+ %matplotlib inline
31
+ nexus_bank = pd.read_csv('nexus_bank_dataa.csv')
32
+ nexus_bank.head()
33
+ from sklearn.model_selection import train_test_split
34
+ X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.15, random_state=90)
35
+ from sklearn.neighbors import KNeighborsClassifier
36
+ knn_classifier =KNeighborsClassifier()
37
+ knn_classifier.fit(X_train,y_train)
38
+ knn_predict = knn_classifier.predict(X_test)
39
+ knn_predict
40
+ import gradio as gr
41
+
42
+ # Prediction function
43
+ def predict_defaulter(salary, dependents):
44
+ input_data = [[salary, dependents]]
45
+ knn_predict = knn_classifier.predict(input_data)
46
+ return "Yes! its Defaulter" if knn_predict[0] == 1 else "No! its not Defaulter"
47
+
48
+ # Interface
49
+ interface = gr.Interface(
50
+ fn=predict_defaulter,
51
+ inputs=["number", "number"],
52
+ outputs="text",
53
+ title="Defaulter Prediction"
54
+ )
55
+
56
+ # Launch the interface
57
+ interface.launch()