File size: 4,288 Bytes
16dd2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: donut-base-eco_v3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# donut-base-eco_v3

This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1236

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.7637        | 0.05  | 10   | 4.3966          |
| 4.7131        | 0.1   | 20   | 3.4323          |
| 3.6024        | 0.15  | 30   | 2.7923          |
| 2.8768        | 0.2   | 40   | 2.4152          |
| 3.0689        | 0.25  | 50   | 2.2683          |
| 2.4879        | 0.3   | 60   | 2.0826          |
| 2.3029        | 0.35  | 70   | 1.9588          |
| 2.2746        | 0.4   | 80   | 1.8516          |
| 2.7149        | 0.45  | 90   | 1.7636          |
| 2.1114        | 0.51  | 100  | 1.7028          |
| 2.2623        | 0.56  | 110  | 1.6586          |
| 1.826         | 0.61  | 120  | 1.5988          |
| 2.0984        | 0.66  | 130  | 1.5454          |
| 1.4917        | 0.71  | 140  | 1.5161          |
| 1.4414        | 0.76  | 150  | 1.4859          |
| 1.9446        | 0.81  | 160  | 1.4424          |
| 1.923         | 0.86  | 170  | 1.4239          |
| 1.5272        | 0.91  | 180  | 1.4003          |
| 1.8752        | 0.96  | 190  | 1.3695          |
| 1.1883        | 1.01  | 200  | 1.3520          |
| 1.432         | 1.06  | 210  | 1.3340          |
| 1.6104        | 1.11  | 220  | 1.3292          |
| 1.3261        | 1.16  | 230  | 1.3174          |
| 1.3727        | 1.21  | 240  | 1.3024          |
| 1.6194        | 1.26  | 250  | 1.2777          |
| 1.6811        | 1.31  | 260  | 1.2793          |
| 1.3327        | 1.36  | 270  | 1.2636          |
| 1.2379        | 1.41  | 280  | 1.2492          |
| 1.8061        | 1.46  | 290  | 1.2423          |
| 1.6403        | 1.52  | 300  | 1.2333          |
| 1.5277        | 1.57  | 310  | 1.2245          |
| 1.8438        | 1.62  | 320  | 1.2114          |
| 1.6035        | 1.67  | 330  | 1.2127          |
| 1.4338        | 1.72  | 340  | 1.2061          |
| 1.4517        | 1.77  | 350  | 1.1997          |
| 1.7217        | 1.82  | 360  | 1.1891          |
| 1.1229        | 1.87  | 370  | 1.1836          |
| 1.2508        | 1.92  | 380  | 1.1767          |
| 1.0494        | 1.97  | 390  | 1.1726          |
| 1.3746        | 2.02  | 400  | 1.1710          |
| 0.8878        | 2.07  | 410  | 1.1708          |
| 1.4181        | 2.12  | 420  | 1.1642          |
| 1.1233        | 2.17  | 430  | 1.1627          |
| 1.4889        | 2.22  | 440  | 1.1654          |
| 1.4098        | 2.27  | 450  | 1.1592          |
| 1.4169        | 2.32  | 460  | 1.1526          |
| 1.3255        | 2.37  | 470  | 1.1470          |
| 1.4087        | 2.42  | 480  | 1.1449          |
| 0.9108        | 2.47  | 490  | 1.1455          |
| 1.4604        | 2.53  | 500  | 1.1425          |
| 1.47          | 2.58  | 510  | 1.1334          |
| 1.4215        | 2.63  | 520  | 1.1313          |
| 1.2907        | 2.68  | 530  | 1.1285          |
| 1.2292        | 2.73  | 540  | 1.1273          |
| 1.3936        | 2.78  | 550  | 1.1261          |
| 1.1875        | 2.83  | 560  | 1.1250          |
| 1.4496        | 2.88  | 570  | 1.1245          |
| 1.3273        | 2.93  | 580  | 1.1239          |
| 1.4324        | 2.98  | 590  | 1.1236          |


### Framework versions

- Transformers 4.39.2
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2