EntropicLettuce commited on
Commit
a16a193
·
verified ·
1 Parent(s): b75ee31

First Push

Browse files
README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: ml-agents
3
+ tags:
4
+ - SoccerTwos
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - ML-Agents-SoccerTwos
8
+ ---
9
+
10
+ # **poca** Agent playing **SoccerTwos**
11
+ This is a trained model of a **poca** agent playing **SoccerTwos**
12
+ using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
13
+
14
+ ## Usage (with ML-Agents)
15
+ The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
16
+
17
+ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
18
+ - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
19
+ browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
20
+ - A *longer tutorial* to understand how works ML-Agents:
21
+ https://huggingface.co/learn/deep-rl-course/unit5/introduction
22
+
23
+ ### Resume the training
24
+ ```bash
25
+ mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
26
+ ```
27
+
28
+ ### Watch your Agent play
29
+ You can watch your agent **playing directly in your browser**
30
+
31
+ 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
32
+ 2. Step 1: Find your model_id: EntropicLettuce/poca-SoccerTwos
33
+ 3. Step 2: Select your *.nn /*.onnx file
34
+ 4. Click on Watch the agent play 👀
35
+
SoccerTwos-32999971.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e864eeac0aa4eec12c090552aac7153c13792713728b2eae9504b5f4575c98e0
3
+ size 1768747
SoccerTwos-32999971.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56c55bd4ca1c17ce376d504978c6780d4ff592cfe9d0b01d5c8dae4c79e9de21
3
+ size 28432146
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"behaviors": {"SoccerTwos": {"trainer_type": "poca", "hyperparameters": {"batch_size": 2048, "buffer_size": 20480, "learning_rate": 0.0003, "beta": 0.005, "epsilon": 0.2, "lambd": 0.95, "num_epoch": 3, "learning_rate_schedule": "constant"}, "network_settings": {"normalize": false, "hidden_units": 512, "num_layers": 2, "vis_encode_type": "simple"}, "reward_signals": {"extrinsic": {"gamma": 0.99, "strength": 1.0}}, "keep_checkpoints": 5, "max_steps": 150000000, "time_horizon": 1000, "summary_freq": 10000, "self_play": {"save_steps": 50000, "team_change": 200000, "swap_steps": 2000, "window": 10, "play_against_latest_model_ratio": 0.5, "initial_elo": 1200.0}}}}
configuration.yaml ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ behaviors:
2
+ SoccerTwos:
3
+ trainer_type: poca
4
+ hyperparameters:
5
+ batch_size: 2048
6
+ buffer_size: 20480
7
+ learning_rate: 0.0003
8
+ beta: 0.005
9
+ epsilon: 0.2
10
+ lambd: 0.95
11
+ num_epoch: 3
12
+ learning_rate_schedule: constant
13
+ network_settings:
14
+ normalize: false
15
+ hidden_units: 512
16
+ num_layers: 2
17
+ vis_encode_type: simple
18
+ reward_signals:
19
+ extrinsic:
20
+ gamma: 0.99
21
+ strength: 1.0
22
+ keep_checkpoints: 5
23
+ max_steps: 150000000
24
+ time_horizon: 1000
25
+ summary_freq: 10000
26
+ self_play:
27
+ save_steps: 50000
28
+ team_change: 200000
29
+ swap_steps: 2000
30
+ window: 10
31
+ play_against_latest_model_ratio: 0.5
32
+ initial_elo: 1200.0