File size: 2,415 Bytes
dc51e4a 8a700a4 dc51e4a f593f7e dc51e4a 8a700a4 dc51e4a 70eacbd dc51e4a 70eacbd dc51e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: roberta-base-Roberta-Model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-Roberta-Model
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8450
- F1: 0.6468
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.916 | 0.5 | 500 | 0.8835 | 0.6218 |
| 0.8783 | 1.0 | 1000 | 0.8467 | 0.6531 |
| 0.8769 | 1.5 | 1500 | 0.8581 | 0.6487 |
| 0.8499 | 2.01 | 2000 | 0.8651 | 0.6488 |
| 0.8734 | 2.51 | 2500 | 0.8908 | 0.6409 |
| 0.8597 | 3.01 | 3000 | 0.8923 | 0.6409 |
| 0.8987 | 3.51 | 3500 | 0.8999 | 0.6215 |
| 0.879 | 4.01 | 4000 | 0.9219 | 0.6220 |
| 0.8892 | 4.51 | 4500 | 0.8936 | 0.6220 |
| 0.8926 | 5.02 | 5000 | 0.8914 | 0.6226 |
| 0.975 | 5.52 | 5500 | 0.8984 | 0.6405 |
| 0.9387 | 6.02 | 6000 | 1.1061 | 0.2347 |
| 0.9446 | 6.52 | 6500 | 0.8879 | 0.6436 |
| 0.879 | 7.02 | 7000 | 0.9053 | 0.6216 |
| 0.8657 | 7.52 | 7500 | 0.8552 | 0.6446 |
| 0.8396 | 8.02 | 8000 | 0.8535 | 0.6475 |
| 0.8264 | 8.53 | 8500 | 0.8476 | 0.6519 |
| 0.8555 | 9.03 | 9000 | 0.8450 | 0.6468 |
| 0.851 | 9.53 | 9500 | 0.8807 | 0.6404 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|