Create pipeline.py
Browse files- pipeline.py +64 -0
pipeline.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
|
8 |
+
class NewsClassifierConfig(PretrainedConfig):
|
9 |
+
model_type = "news_classifier"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
max_length=41, # Modified to match model input shape
|
14 |
+
vocab_size=74934, # Modified based on embedding layer size
|
15 |
+
embedding_dim=128, # Added to match model architecture
|
16 |
+
hidden_size=64, # Matches final LSTM layer
|
17 |
+
num_labels=2,
|
18 |
+
**kwargs
|
19 |
+
):
|
20 |
+
self.max_length = max_length
|
21 |
+
self.vocab_size = vocab_size
|
22 |
+
self.embedding_dim = embedding_dim
|
23 |
+
self.hidden_size = hidden_size
|
24 |
+
self.num_labels = num_labels
|
25 |
+
super().__init__(**kwargs)
|
26 |
+
|
27 |
+
class NewsClassifier(PreTrainedModel):
|
28 |
+
config_class = NewsClassifierConfig
|
29 |
+
base_model_prefix = "news_classifier"
|
30 |
+
|
31 |
+
def __init__(self, config):
|
32 |
+
super().__init__(config)
|
33 |
+
self.model = None # Will be loaded in post_init
|
34 |
+
self.tokenizer = None
|
35 |
+
|
36 |
+
def post_init(self):
|
37 |
+
"""Load model and tokenizer after initialization"""
|
38 |
+
self.model = load_model('news_classifier.h5')
|
39 |
+
with open('tokenizer.json', 'r') as f:
|
40 |
+
tokenizer_data = json.load(f)
|
41 |
+
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
42 |
+
|
43 |
+
def forward(self, text_input):
|
44 |
+
if not self.model or not self.tokenizer:
|
45 |
+
self.post_init()
|
46 |
+
|
47 |
+
if isinstance(text_input, str):
|
48 |
+
text_input = [text_input]
|
49 |
+
|
50 |
+
sequences = self.tokenizer.texts_to_sequences(text_input)
|
51 |
+
padded = pad_sequences(sequences, maxlen=self.config.max_length)
|
52 |
+
predictions = self.model.predict(padded, verbose=0)
|
53 |
+
|
54 |
+
results = []
|
55 |
+
for pred in predictions:
|
56 |
+
# Convert from 2-class output to single score
|
57 |
+
score = float(pred[1]) # Assuming pred[1] is the probability for "foxnews"
|
58 |
+
label = "foxnews" if score > 0.5 else "nbc"
|
59 |
+
results.append({
|
60 |
+
"label": label,
|
61 |
+
"score": score if label == "foxnews" else 1 - score
|
62 |
+
})
|
63 |
+
|
64 |
+
return results[0] if len(text_input) == 1 else results
|