from transformers import PreTrainedModel, PretrainedConfig from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.text import tokenizer_from_json from tensorflow.keras.preprocessing.sequence import pad_sequences import numpy as np import json class NewsClassifierConfig(PretrainedConfig): model_type = "news_classifier" def __init__( self, max_length=41, # Modified to match model input shape vocab_size=74934, # Modified based on embedding layer size embedding_dim=128, # Added to match model architecture hidden_size=64, # Matches final LSTM layer num_labels=2, **kwargs ): self.max_length = max_length self.vocab_size = vocab_size self.embedding_dim = embedding_dim self.hidden_size = hidden_size self.num_labels = num_labels super().__init__(**kwargs) class NewsClassifier(PreTrainedModel): config_class = NewsClassifierConfig base_model_prefix = "news_classifier" def __init__(self, config): super().__init__(config) self.model = None # Will be loaded in post_init self.tokenizer = None def post_init(self): """Load model and tokenizer after initialization""" self.model = load_model('news_classifier.h5') with open('tokenizer.json', 'r') as f: tokenizer_data = json.load(f) self.tokenizer = tokenizer_from_json(tokenizer_data) def forward(self, text_input): if not self.model or not self.tokenizer: self.post_init() if isinstance(text_input, str): text_input = [text_input] sequences = self.tokenizer.texts_to_sequences(text_input) padded = pad_sequences(sequences, maxlen=self.config.max_length) predictions = self.model.predict(padded, verbose=0) results = [] for pred in predictions: # Convert from 2-class output to single score score = float(pred[1]) # Assuming pred[1] is the probability for "foxnews" label = "foxnews" if score > 0.5 else "nbc" results.append({ "label": label, "score": score if label == "foxnews" else 1 - score }) return results[0] if len(text_input) == 1 else results