--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_keras_callback model-index: - name: Ermira/bert-base-multilingual-uncased-finetuned-ner results: [] --- # Ermira/bert-base-multilingual-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0482 - Validation Loss: 0.0561 - Train Precision: 0.9270 - Train Recall: 0.9424 - Train F1: 0.9347 - Train Accuracy: 0.9846 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1485 | 0.0642 | 0.9083 | 0.9288 | 0.9184 | 0.9820 | 0 | | 0.0482 | 0.0561 | 0.9270 | 0.9424 | 0.9347 | 0.9846 | 1 | ### Framework versions - Transformers 4.41.1 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1