--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: Ermira/distilbert-base-uncased-finetuned-ner results: [] --- # Ermira/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0353 - Validation Loss: 0.0616 - Train Precision: 0.9206 - Train Recall: 0.9342 - Train F1: 0.9274 - Train Accuracy: 0.9831 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1986 | 0.0718 | 0.8969 | 0.9174 | 0.9070 | 0.9789 | 0 | | 0.0545 | 0.0628 | 0.9229 | 0.9280 | 0.9254 | 0.9826 | 1 | | 0.0353 | 0.0616 | 0.9206 | 0.9342 | 0.9274 | 0.9831 | 2 | ### Framework versions - Transformers 4.39.3 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2