File size: 5,411 Bytes
34bd885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import import_ipynb\n",
    "from Encoder import Encoder, EncoderBlock, MultiHeadAttentionBlock, FeedForwardBlock, InputEmbeddingsLayer, PositionalEncodingLayer\n",
    "from Decoder import Decoder, DecoderBlock, MultiHeadAttentionBlock, FeedForwardBlock, InputEmbeddingsLayer, PositionalEncodingLayer\n",
    "\n",
    "import torch\n",
    "import torch.nn as nn \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "class LinearLayer(nn.Module):\n",
    "\n",
    "    def __init__(self, d_model: int, vocab_size: int) -> None:\n",
    "        super().__init__()\n",
    "        self.Linear = nn.Linear(d_model, vocab_size)\n",
    "\n",
    "    def forward(self, x):\n",
    "        return self.Linear(x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "class TransformerBlock(nn.Module):\n",
    "\n",
    "    def __init__(self, encoder: Encoder, decoder: Decoder, source_embedding: InputEmbeddingsLayer, target_embedding: InputEmbeddingsLayer, source_position: PositionalEncodingLayer, target_position: PositionalEncodingLayer, Linear: LinearLayer) -> None:\n",
    "        super().__init__()\n",
    "        self.encoder = encoder \n",
    "        self.decoder = decoder \n",
    "        self.source_embedding = source_embedding\n",
    "        self.target_embedding = target_embedding\n",
    "        self.source_position = source_position\n",
    "        self.target_position = target_position\n",
    "        self.Linear = Linear\n",
    "\n",
    "    def encode(self, source_language, source_mask):\n",
    "        source_language = self.source_embedding(source_language)\n",
    "        source_language = self.source_position(source_language)\n",
    "        return self.encoder(source_language, source_mask)\n",
    "\n",
    "    def decode(self, Encoder_output, source_mask, target_language, target_mask):\n",
    "        target_language = self.target_embedding(target_language)\n",
    "        target_language = self.target_position(target_language)\n",
    "        return self.decoder(target_language, Encoder_output, source_mask, target_mask)\n",
    "\n",
    "    def linear(self, x):\n",
    "        return self.Linear(x)\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def Transformer_Model(source_vocab_size: int, target_vocab_size: int, source_sequence_length: int, target_sequence_length: int, d_model: int = 512, Layers: int = 6, heads: int = 8, dropout: float = 0.1, d_ff: int = 2048)->TransformerBlock:\n",
    "\n",
    "    source_embedding = InputEmbeddingsLayer(d_model, source_vocab_size)\n",
    "    target_embedding = InputEmbeddingsLayer(d_model, target_vocab_size)\n",
    "\n",
    "    source_position = PositionalEncodingLayer(d_model, source_sequence_length, dropout)\n",
    "    target_position = PositionalEncodingLayer(d_model, target_sequence_length, dropout)\n",
    "\n",
    "    EncoderBlocks = []\n",
    "    for _ in range(Layers):\n",
    "        encoder_self_attention_block = MultiHeadAttentionBlock(d_model, heads, dropout)\n",
    "        encoder_feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)\n",
    "        encoder_block = EncoderBlock(encoder_self_attention_block, encoder_feed_forward_block, dropout)\n",
    "        EncoderBlocks.append(encoder_block)\n",
    "\n",
    "    DecoderBlocks = []\n",
    "    for _ in range(Layers):\n",
    "        decoder_self_attention_block = MultiHeadAttentionBlock(d_model, heads, dropout)\n",
    "        decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, heads, dropout)\n",
    "        decoder_feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)\n",
    "        decoder_block = DecoderBlock(decoder_self_attention_block, decoder_cross_attention_block, decoder_feed_forward_block, dropout)\n",
    "        DecoderBlocks.append(decoder_block)\n",
    "\n",
    "    encoder = Encoder(nn.ModuleList(EncoderBlocks))\n",
    "    decoder = Decoder(nn.ModuleList(DecoderBlocks))\n",
    "\n",
    "    linear = LinearLayer(d_model, target_vocab_size)\n",
    "\n",
    "    Transformer = TransformerBlock(encoder, decoder, source_embedding, target_embedding, source_position, target_position, linear)\n",
    "    \n",
    "    for t in Transformer.parameters():\n",
    "        if t.dim() > 1:\n",
    "            nn.init.xavier_uniform(t)\n",
    "\n",
    "    return Transformer\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "5f594f1fbc6ec12c92a2efee092a20dcfd0697dc036fc348ba81f2fc261c5e29"
  },
  "kernelspec": {
   "display_name": "Python 3.11.5 64-bit",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}