File size: 6,671 Bytes
34bd885 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"import torch \n",
"import torch.nn as nn\n",
"\n",
"class InputEmbeddingsLayer(nn.Module):\n",
" def __init__(self, d_model: int, vocab_size: int) -> None:\n",
" super().__init__()\n",
" self.d_model = d_model\n",
" self.vocab_size = vocab_size\n",
" self.embedding = nn.Embedding(vocab_size, d_model)\n",
" def forward(self, x):\n",
" return self.embedding(x) * math.sqrt(self.d_model)\n",
"\n",
"class PositionalEncodingLayer(nn.Module):\n",
" def __init__(self, d_model: int, sequence_length: int, dropout: float) -> None:\n",
" super().__init__()\n",
" self.d_model = d_model\n",
" self.sequence_length = sequence_length\n",
" self.dropout = nn.Dropout(dropout)\n",
"\n",
" PE = torch.zeros(sequence_length, d_model)\n",
" Position = torch.arange(0, sequence_length, dtype=torch.float).unsqueeze(1)\n",
" deviation_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))\n",
" \n",
" PE[:, 0::2] = torch.sin(Position * deviation_term)\n",
" PE[:, 1::2] = torch.cos(Position * deviation_term)\n",
" PE = PE.unsqueeze(0)\n",
" self.register_buffer(\"PE\", PE)\n",
" def forward(self, x):\n",
" x = x + (self.PE[:, :x.shape[1], :]).requires_grad_(False)\n",
" return self.dropout(x)\n",
"\n",
"class NormalizationLayer(nn.Module):\n",
" def __init__(self, Epslone: float = 10**-6) -> None:\n",
" super().__init__()\n",
" self.Epslone = Epslone\n",
" self.Alpha = nn.Parameter(torch.ones(1))\n",
" self.Bias = nn.Parameter(torch.ones(1))\n",
" def forward(self, x):\n",
" mean = x.mean(dim = -1, keepdim = True)\n",
" std = x.std(dim = -1, keepdim = True)\n",
" return self.Alpha * (x - mean) / (std + self.Epslone) + self.Bias\n",
"\n",
"class FeedForwardBlock(nn.Module):\n",
" def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:\n",
" super().__init__()\n",
" self.Linear_1 = nn.Linear(d_model, d_ff)\n",
" self.dropout = nn.Dropout(dropout)\n",
" self.Linear_2 = nn.Linear(d_ff, d_model)\n",
" def forward(self, x):\n",
" return self.Linear_2(self.dropout(torch.relu(self.Linear_1(x))))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class MultiHeadAttentionBlock(nn.Module):\n",
" def __init__(self, d_model: int, heads: int, dropout: float) -> None:\n",
" super().__init__()\n",
" self.d_model = d_model\n",
" self.heads = heads \n",
" assert d_model % heads == 0, \"d_model is not divisable by heads\"\n",
"\n",
" self.d_k = d_model // heads\n",
"\n",
" self.W_Q = nn.Linear(d_model, d_model)\n",
" self.W_K = nn.Linear(d_model, d_model)\n",
" self.W_V = nn.Linear(d_model, d_model)\n",
"\n",
" self.W_O = nn.Linear(d_model, d_model)\n",
" self.dropout = nn.Dropout(dropout)\n",
" \n",
" @staticmethod\n",
" def Attention(Query, Key, Value, mask, dropout: nn.Module):\n",
" d_k = Query.shape[-1]\n",
"\n",
" self_attention_score = (Query @ Key.transpose(-2,-1)) / math.sqrt(d_k)\n",
" if mask is not None:\n",
" self_attention_score.masked_fill_(mask == 0, -1e9)\n",
" self_attention_score = self_attention_score.softmax(dim = -1)\n",
"\n",
" if dropout is not None:\n",
" self_attention_score = dropout(self_attention_score)\n",
" return self_attention_score @ Value\n",
" def forward(self, query, key, value, mask):\n",
" Query = self.W_Q(query)\n",
" Key = self.W_K(key)\n",
" Value = self.W_V(value)\n",
"\n",
" Query = Query.view(Query.shape[0], Query.shape[1], self.heads, self.d_k).transpose(1,2)\n",
" Key = Key.view(Key.shape[0], Key.shape[1], self.heads, self.d_k).transpose(1,2)\n",
" Value = Value.view(Value.shape[0], Value.shape[1], self.heads, self.d_k).transpose(1,2)\n",
"\n",
" x, self.self_attention_score = MultiHeadAttentionBlock.Attention(Query, Key, Value, mask, self.dropout)\n",
" x = x.transpose(1,2).contiguous().view(x.shape[0], -1, self.heads * self.d_k)\n",
" return self.W_O(x)\n",
"\n",
"class ResidualConnection(nn.Module):\n",
" def __init__(self, dropout: float) -> None:\n",
" super().__init__()\n",
" self.dropout = nn.Dropout(dropout)\n",
" self.normalization = NormalizationLayer()\n",
" def forward(self, x, subLayer):\n",
" return x + self.dropout(subLayer(self.normalization(x)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Building the encoder block \n",
"class EncoderBlock(nn.Module):\n",
" def __init__(self, encoder_self_attention_block: MultiHeadAttentionBlock, encoder_feed_forward_block: FeedForwardBlock, dropout: float) -> None:\n",
" super().__init__()\n",
" self.encoder_self_attention_block = encoder_self_attention_block\n",
" self.encoder_feed_forward_block = encoder_feed_forward_block\n",
" self.residual_connection = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)])\n",
" def forward(self, x, source_mask):\n",
" x = self.residual_connection[0](x, lambda x: self.encoder_self_attention_block(x, x, x, source_mask))\n",
" x = self.residual_connection[1](x, self.encoder_feed_forward_block)\n",
" return x\n",
"\n",
"class Encoder(nn.Module):\n",
" def __init__(self, Layers: nn.ModuleList) -> None:\n",
" super().__init__()\n",
" self.Layers = Layers\n",
" self.normalization = NormalizationLayer()\n",
" def forward(self, x, source_mask):\n",
" for layer in self.Layers:\n",
" x = layer(x, source_mask)\n",
" return self.normalization(x)"
]
}
],
"metadata": {
"language_info": {
"name": "python"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|