aayush-shah commited on
Commit
d20b41b
1 Parent(s): 2e6976e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -168
README.md CHANGED
@@ -1,199 +1,74 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
 
 
 
 
 
 
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ base_model: meta-llama/Meta-Llama-3-8B
4
  ---
5
 
 
 
 
 
 
6
 
7
  ## Model Details
8
 
9
+ Protein-Llama-3-8B is a specialized version of the Llama-3-8B large language model, fine-tuned for the task of protein language modeling.
10
+ This model has been continually pre-trained using LoRA technique on extensive datasets of protein sequences, enabling it to generate novel protein sequences based on natural language prompts.
11
+ It supports both uncontrollable and controllable protein generation, allowing users to specify desired characteristics for the proteins.
12
+ The model is designed to facilitate advancements in protein engineering, making it a valuable tool for drug development, chemical synthesis, and other biotechnological applications.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ ### Model Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ Generating novel protein sequences possessing desired properties, termed as protein engineering, is crucial for industries like drug development and chemical synthesis. Traditional protein engineering techniques often involve introducing random mutations into the gene encoding the protein of interest. This is followed by expression and screening to identify variants with improved or novel functions, which are then reproduced. While effective, these approaches are labor-intensive and time-consuming, as they rely on iterating over known protein sequences. This limits their ability to generate diverse protein sequences with entirely new capabilities, as they are constrained by existing protein templates. Moreover, the need to analyze numerous protein variants can waste valuable experimental resources.
17
 
18
+ However, leveraging a Large Language Model (LLM) that has learned the "protein language" significantly accelerates this process. An LLM can generate and evaluate protein sequences in a matter of seconds. The inherent randomness of LLM-generated sequences enhances diversity, enabling the creation of completely novel proteins with potentially unprecedented functions. This not only streamlines the discovery and development process but also expands the scope of possibilities in protein engineering.
19
 
20
+ This model is based on the Llama-3-8B architecture and is capable of generating proteins based on user defined characteristics.
21
 
 
22
 
23
+ ## Usage
24
 
25
+ To download and use the Protein LLaMA 3 model for inference, follow these steps:
26
 
27
+ ### Installation
28
 
29
+ Ensure you have the `transformers` library installed. You can install it using pip:
30
 
31
+ ```bash
32
+ pip install transformers
33
 
 
34
 
35
+ ### Uncontrollable Generation
36
 
37
+ Uncontrollable generation can be handled via prompting the model with the phrase 'Seq=<'.
38
 
39
+ ```
40
+ generator = pipeline('text-generation', model=merged_model, tokenizer=tokenizer)
41
 
42
+ sequences = generator("Seq=<",temperature=0.2,
43
+ top_k=40,
44
+ top_p=0.9,
45
+ do_sample=True,
46
+ repetition_penalty=1.2,
47
+ max_new_tokens=30,
48
+ num_return_sequences=500)
49
 
50
+ for sequence in sequences:
51
+ print(sequence['generated_text'])
52
 
53
+ ```
54
 
55
+ ### Controllable Generation
56
 
57
+ Controllable generation can be done by prompting the model with '[Generate xxx protein] Seq=<'. Here, xxx can be any family from the 10 classes supported by this model.
58
 
59
+ ```
60
+ generator = pipeline('text-generation', model=merged_model, tokenizer=tokenizer)
61
 
62
+ sequences = generator("[Generate Oxidoreductase protein] Seq=<",temperature=0.2,
63
+ top_k=40,
64
+ top_p=0.9,
65
+ do_sample=True,
66
+ repetition_penalty=1.2,
67
+ max_new_tokens=30,
68
+ num_return_sequences=500)
69
 
70
+ for sequence in sequences:
71
+ print(sequence['generated_text'])
72
 
73
+ ```
74