ericsorides commited on
Commit
a4c13ff
1 Parent(s): c6f344d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +147 -0
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - text-generation-inference
4
+ - gemma
5
+ - 4-bit precision
6
+ - AWQ
7
+ base_model:
8
+ - google/gemma-2b-it
9
+ ---
10
+
11
+
12
+ # Gemma 2B instruct with Key-Value-Cache enabled in ONNX AWQ (4-bit) format
13
+ - Model creator: [Google](https://huggingface.co/google)
14
+ - Original model: [Gemma 2B instruct](https://huggingface.co/google/gemma-2b-it)
15
+
16
+ <!-- description start -->
17
+ ## Description
18
+
19
+ This repo contains the ONNX files of the ONNX conversion of Gemma 2B instruct done by Esperanto Technologies.
20
+ The model is in the 4-bit format quantized with AWQ and has the KVC enabled.
21
+
22
+ ### About AWQ
23
+
24
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
25
+ More here: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ)
26
+
27
+ <!-- description end -->
28
+
29
+ ## How to download ONNX model and weight files
30
+
31
+ The easiest way to obtain the model is to clone this whole repo.
32
+ Alternatively you can download the files is using the `huggingface-hub` Python library.
33
+
34
+ ```shell
35
+ pip3 install huggingface-hub>=0.17.1
36
+ ```
37
+
38
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
39
+
40
+ ```shell
41
+ huggingface-cli download Esperanto/gemma-2b-it-kvc-AWQ-int4-onnx --local-dir gemma-2b-it-kvc-AWQ-int4-onnx --local-dir-use-symlinks False
42
+ ```
43
+
44
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
45
+
46
+ ## How to run from Python code using ONNXRuntime
47
+
48
+ This model can easily be ran in a CPU using [ONNXRuntime](https://onnxruntime.ai/).
49
+
50
+ #### First install the packages
51
+
52
+ ```bash
53
+ pip3 install onnx==1.16.1
54
+ pip3 install onnxruntime==1.17.1
55
+ ```
56
+
57
+ #### Example code: generate text with this model
58
+
59
+ We define the loop with greedy decoding:
60
+ ```python
61
+ import numpy as np
62
+ import onnxruntime
63
+ import onnx
64
+ from transformers import AutoTokenizer
65
+
66
+ def generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context):
67
+ model = onnx.load(model_path)
68
+
69
+ #we create the inputs for the first iteration
70
+ input_tensor = tokenizer(prompt, return_tensors="pt")
71
+ prompt_size = len(input_tensor['input_ids'][0])
72
+ actual_input = input_tensor['input_ids']
73
+ if prompt_size < window:
74
+ actual_input = np.concatenate((tokenizer.bos_token_id*np.ones([1, window - prompt_size], dtype = 'int64'),
75
+ actual_input), axis=1)
76
+ if prompt_size + max_gen_tokens > total_sequence:
77
+ print("ERROR: Longer total sequence is needed!")
78
+ return
79
+ first_attention = np.concatenate((np.zeros([1, total_sequence - window], dtype = 'int64'),
80
+ np.ones((1, window), dtype = 'int64')), axis=1)
81
+ max_gen_tokens += prompt_size #we need to generate on top of parsing the prompt
82
+ inputs_names =[node.name for node in model.graph.input]
83
+ output_names =[node.name for node in model.graph.output]
84
+ n_heads = 1 #gqa-heads of the kvc
85
+ inputs_dict = {}
86
+ inputs_dict['input_ids'] = actual_input[:, :window].reshape(1, window).numpy()
87
+ inputs_dict['attention_mask'] = first_attention
88
+ for name in inputs_names:
89
+ if name == 'input_ids' or name == 'attention_mask': continue
90
+ inputs_dict[name] = np.zeros([1, n_heads, context-window, 256], dtype="float16")
91
+ index = 0
92
+ new_token = np.array([10])
93
+ next_index = window
94
+ old_j = 0
95
+ total_input = actual_input.numpy()
96
+
97
+ rt_session = onnxruntime.InferenceSession(model_path)
98
+ ## We run the inferences
99
+ while next_index < max_gen_tokens:
100
+ if new_token.any() == tokenizer.eos_token_id:
101
+ break
102
+ #inference
103
+ output = rt_session.run(output_names, inputs_dict)
104
+ outs_dictionary = {name: content for (name, content) in zip (output_names, output)}
105
+ #we prepare the inputs for the next inference
106
+ for name in inputs_names:
107
+ if name == 'input_ids':
108
+ old_j = next_index
109
+ if next_index < prompt_size:
110
+ if prompt_size - next_index >= window: next_index += window
111
+ else: next_index = prompt_size
112
+ j = next_index - window
113
+ else:
114
+ next_index +=1
115
+ j = next_index - window
116
+ new_token = outs_dictionary['logits'].argmax(-1).reshape(1, window)
117
+ total_input = np.concatenate((total_input, new_token[: , -1:]), axis = 1)
118
+ inputs_dict['input_ids']= total_input[:, j:next_index].reshape(1, window)
119
+ elif name == 'attention_mask':
120
+ inputs_dict['attention_mask'] = np.concatenate((np.zeros((1, total_sequence-next_index), dtype = 'int64'), np.ones((1, next_index), dtype = 'int64')), axis=1)
121
+ else:
122
+ old_name = name.replace("past_key_values", "present")
123
+ inputs_dict[name] = outs_dictionary[old_name][:, :, next_index-old_j:context-window+(next_index - old_j), :]
124
+
125
+ answer = tokenizer.decode(total_input[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
126
+ return answer
127
+ ```
128
+ We now run the inferences:
129
+
130
+ ```python
131
+ tokenizer = AutoTokenizer.from_pretrained("Esperanto/gemma-2b-it-kvc-AWQ-int4-onnx")
132
+ model_path = "gemma-2b-it-kvc-AWQ-int4-onnx/model.onnx"
133
+
134
+ max_gen_tokens = 20 #number of tokens we want tog eneral
135
+ total_sequence = 128 #total sequence_length
136
+ context = 1024 #the context to extend the kvc
137
+ window = 16 #number of tokens we want to parse at the time
138
+ messages = [
139
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
140
+ {"role": "user", "content": "Who are you?"},
141
+ ]
142
+
143
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
144
+
145
+ generated = generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context)
146
+ print(generated)
147
+ ```