File size: 4,798 Bytes
9362f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import gzip
import pickle
import pandas as pd

class Network(object):
    
    def __init__(self, sizes):
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
        self.weights = [np.random.randn(y, x) for x,y in zip(sizes[:-1], sizes[1:])]
        
        
        




    def feedforward(self, a):
        
        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a) + b)
        
        return a
    
    
    def SGD(self, training_data, epochs, mini_batch_size, eta, k, test_data=None):
        if test_data: 
            n_test = len(test_data)

        for j in range(epochs):
            np.random.shuffle(training_data)
            k_fold = self.k_fold_split(training_data, k)

            for fold in range(k):
                validation_data = k_fold[fold]
                train_data = [item for sublist in k_fold[:fold] + k_fold[fold + 1:] for item in sublist]

                for mini_batch in [train_data[k:k+mini_batch_size] for k in range(0, len(train_data), mini_batch_size)]:
                    self.update_mini_batch(mini_batch, eta)
                
                print(f"Epoch {j}, Fold {fold}: {self.evaluate(validation_data)}/{len(validation_data)}")
            
            if test_data:
                print(f"Epoch {j}: {self.evaluate(test_data)}/{n_test}")

    def k_fold_split(self, data, k):
        fold_size = len(data) // k
        return [data[i*fold_size:(i+1)*fold_size] for i in range(k)]
    
    def update_mini_batch(self, mini_batch, eta):
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        
        for x, y in mini_batch:
            delta_nabla_b, delta_nabla_w = self.backdrop(x, y)
            
            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
            
            self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
            self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]

    def evaluate(self, test_data): 
        test_results = [(np.argmax(self.feedforward(x)), np.argmax(y)) for (x, y) in test_data]
        return sum(int(x == y) for (x, y) in test_results)
    
    def cost_derivative(self, output_activations, y):
        return output_activations - y
        
    def backdrop(self, x, y):
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        activation = x
        activations = [x]
        zs = []
        
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
            zs.append(z)
            activation = sigmoid(z)
            activations.append(activation)
        delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
        nabla_b[-1] = delta
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
            
        for l in range(2, self.num_layers):
            z = zs[-l]
            sp = sigmoid_prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
        return (nabla_b, nabla_w)


def sigmoid(z):
        sig = np.zeros_like(z)
        sig[z >= 0] = 1 / (1 + np.exp(-z[z >= 0]))
        sig[z < 0] = np.exp(z[z < 0]) / (1 + np.exp(z[z < 0]))
        return sig            

def sigmoid_prime(z):   
    return sigmoid(z)*(1-sigmoid(z))





def load_data():
    with gzip.open('C:\\Users\\tt235\\Desktop\\Code\\code\\代码复现\\BP神经网络\\mnist.pkl.gz', 'rb') as f:
        training_data, validation_data, test_data = pickle.load(f, encoding='latin1')

    return (training_data, validation_data, test_data)

def load_data_wrapper():
    tr_d, va_d, te_d = load_data()
    training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
    training_results = [vectorized_result(y) for y in tr_d[1]]
    training_data = list(zip(training_inputs, training_results))
    validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
    validation_data = list(zip(validation_inputs, va_d[1]))
    test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
    test_results = [vectorized_result(y) for y in te_d[1]]
    test_data = list(zip(test_inputs, test_results))
    return (training_data, validation_data, test_data)

def vectorized_result(j):
    e = np.zeros((10, 1))
    e[j] = 1.0
    return e


training_data, validation_data, test_data = load_data_wrapper()
net = Network([784, 41, 10])

net.SGD(training_data, 3, 8, 3.0, 5, test_data=test_data)