import numpy as np import gzip import pickle class Network(object): def __init__(self, sizes): self.num_layers = len(sizes)#sizes 列表包含 各层神经元的数量。 self.sizes = sizes self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x,y in zip(sizes[:-1], sizes[1:])] #例:net = Network([2,3,1]) 创建一个 第一层2个 第二层3个 第三层1个 神经元的 Network对象 def feedforward(self, a): #当a为输入时,返回神经网络的输出 for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a) + b) return a def SGD(self, training_data, epochs, mini_batch_size, eta, test_data = None): #epochs=迭代次数 eta=学习速率 if test_data: n_test = len(test_data) n = len(training_data) for j in range(epochs): np.random.shuffle(training_data) mini_batches = [training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) if test_data: print("Epoch {0}: {1}/ {2}".format(j, self.evaluate(test_data), n_test)) else: print("Epoch {0} complete".format(j)) def update_mini_batch(self, mini_batch, eta): nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.backdrop(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)] def evaluate(self, test_data): #测试当前迭代期对测试数据的效果 test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data] return sum(int(x == y) for (x, y) in test_results) def cost_derivative(self, output_activations, y): return output_activations - y def backdrop(self, x, y): nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] activation = x activations = [x] zs = [] #z是上一层的输入 for b, w in zip(self.biases, self.weights): z = np.dot(w, activation)+b zs.append(z) activation = sigmoid(z) activations.append(activation) delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) for l in range(2, self.num_layers): z = zs[-l] sp = sigmoid_prime(z) delta = np.dot(self.weights[-l+1].transpose(), delta) * sp nabla_b[-l] = delta nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) return (nabla_b, nabla_w) def sigmoid(z): #激活函数 常用于二分类 等问题 不过存在 极大值或极小值 梯度趋于0的问题 return 1.0/(1.0+np.exp(-z)) def sigmoid_prime(z): # 计算sigmoid函数的导数 return sigmoid(z)*(1-sigmoid(z)) def load_data(): with gzip.open('C:\\Users\\tt235\\Desktop\\Code\\code\\代码复现\\BP神经网络\\mnist.pkl.gz', 'rb') as f: training_data, validation_data, test_data = pickle.load(f, encoding='latin1') return (training_data, validation_data, test_data) def load_data_wrapper(): tr_d, va_d, te_d = load_data() training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]] training_results = [vectorized_result(y) for y in tr_d[1]] training_data = list(zip(training_inputs, training_results)) validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]] validation_data = list(zip(validation_inputs, va_d[1])) test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]] test_data = list(zip(test_inputs, te_d[1])) return (training_data, validation_data, test_data) def vectorized_result(j): e = np.zeros((10, 1)) e[j] = 1.0 return e training_data, validation_data, test_data = load_data_wrapper() net = Network([784, 41, 10]) net.SGD(training_data, 3, 10, 3.0, test_data = test_data)