--- tags: - merge - mergekit - lazymergekit - NousResearch/Hermes-3-Llama-3.1-8B - Replete-AI/Replete-LLM-V2-Llama-3.1-8b base_model: - NousResearch/Hermes-3-Llama-3.1-8B - Replete-AI/Replete-LLM-V2-Llama-3.1-8b model-index: - name: Herplete-LLM-Llama-3.1-8b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 46.72 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 28.95 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 2.79 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 4.81 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 6.68 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 27.57 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Etherll/Herplete-LLM-Llama-3.1-8b name: Open LLM Leaderboard --- # Herplete-LLM-Llama-3.1-8b Herplete-LLM-Llama-3.1-8b is a continuous finetuned model from Replete-AI/Replete-LLM-V2-Llama-3.1-8b using Lora extracted from Hermes-3-Llama-3.1-8B. You can find the continuous finetuning method here: https://docs.google.com/document/d/1OjbjU5AOz4Ftn9xHQrX3oFQGhQ6RDUuXQipnQ9gn6tU/edit?usp=sharing ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Etherll/Herplete-LLM-Llama-3.1-8b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Etherll__Herplete-LLM-Llama-3.1-8b) | Metric |Value| |-------------------|----:| |Avg. |19.59| |IFEval (0-Shot) |46.72| |BBH (3-Shot) |28.95| |MATH Lvl 5 (4-Shot)| 2.79| |GPQA (0-shot) | 4.81| |MuSR (0-shot) | 6.68| |MMLU-PRO (5-shot) |27.57|